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Let K, be the complete graph with vertex set {v,,v,, ..., v,} and let g =(g,,.... g.)bea
sequence of positive integers. Color each edge of this K, red or blue. In this paper nec:ssary
and sufficient conditions are given which guarantee the exi: of a

subgraph F in K, (as colored) with both red degree and blue degree in F at veriex v, cqual lo
8- When each g =1 this answers a question of Erdds proved in this special case in [1].

1. Intreduction and definitions

All graphs considered in this paper are finite, whose edges are bicolored with
colors red r and blue b and are referred to as colored graphs only and the color of
an edge uv will be denoted by c(uv). In Binkfalvi and Bankfalvi [1] the following
problem of Erdos was solved. Characterize the colored complete graphs in which
there exists an alternating red-blue hamiltonian cycle. In this paper we solve the
following generalization of the above problem and deduce the results of {1]:
Given a sequence (fy,...,f,) of length n of even positive integers, characterize
the colored complete graphs K, of order n with vertex set {v,, ..., v,} in which
there exists a connected spanning subgraph F such that for every i, 1<i<n, the
number of red edges of F incident at v, is equal to the number of blue edges of F
incident at v, and each is equal to if,. The problem of Erdés mentioned above is a
particular case of this problem with f, =2 for every i, 1 <i=<n. The method of
proof uses the theory of alternating chains and is a generalization of the proof
technique in [1] and Rao and Rao [7]. For results regarding the existence of
hamiltonian cycles having adjacent edges with different colors in k-colorations,
satisfying some degree constraints, of the edges of the complete graphs, the reader
is referred to the recent papers of Daykin [5), Chen and Daykin [3]. For some
related problems and resuits we refer to Chen, Daykin and Erdds [4] and also to
the unsolved problem 2 of the book mentioned in [4].

Pertinent definitions are given below; for definitions not given and notation not
explained here the reader is referred to Bondy and Murty [2].

A colored graph G is said to be equitably colored if for every vertex ve V(G),
the vertex set of G, the number of red edges in G incident at v, called the red

0012-365X/83/0000-0000/$03.00 © 1983 North-Holland



10 P. Das. S.B. Rao

degree of v in G and denoted by rg(v), is equal to the blue degree of v in G
denoted by bg(v). An f-factor F of a given colored K, where f=(f,,...,f.) isa
sequence of positive integers, is a spanning subgraph of K, such that re(v)+
be(y) =f, for every i,1=i=<n; and the f-factor F is said to be an equitably
colored f-factor if F is equitably colored; which then implies that f; is an even
positive integer and re(v,) = be(v) = 3f, for every i, 1<i=<n,

An eulerian closed trail E, =x,x; " - X;,.x, (where x,,..., X, are the vertices
occurring in the trail) in a colored graph G is said to be an alternating eulerian
trail if the edges x x3, X2X3. ..., X2,%, in E, in this ordering are alternately red
and blue; further, if V(G)={v,,...,v,}. the sequence (f,,...,f,), where f =
16(v)+bs(v). 1<i<n, is called the degree sequence of G and also of the
alternating eulerian trail E,. The classes of E,, by definition, are the vertex sets
A, ={x,,x3,...,X3,} and B, ={xz, X4, ..., X3,}; note that A,, B, need not be
disjoint. For arbitrary integer j we mean by x; the vertex x, of E, where 1 <i=<2y
and i=j (mod 2p).

The edges of K, with one end vertex in A and the other end vertex in B are
referred to as AB-edges, where A, B are subsets of V(K,,). If E, is an alternating
eulerian trail of a subgraph C, of a colored K, and C, is another subgraph of this
K, with V(C,)N V(C>) =@, then we define the symbol C, — G, if all A, V(C,)-
edges are of the same color and all B, V(C,)-edges are of the other color where
A, B, are the classes of E,; in particular then A,NB,=@ and C, is a bipartite
graph with the bipartition A, B,. ~(C, = C,) denotes the negation of (C, — C,).

A red (respectively, blue) exchangeable trail T with respect to a subgraph F of a
colored K, is a closed trail T of even length in K, whose edges are all red
(respectively, blue) and which alternately belong to E(F) and E(K,)-E(F). A
coloration of K, is said to be a self-complementary coloration if the red subgraph
of K,, with vertex set V(K,,) is isomorphic to the blue subgraph of K, ; in that case
n=0 or 1 (mod 4).

If E\=xx3 - -x, and E,=y,y, - -y, are two chains in a graph G with x, = y,,
then the concatenation denoted by E,+E, denotes the chain E,+E,=
Xy " XYz Y, and the chain xx,_, - - x,, obtained by reversing E,, will be
denoted by E7'.

2. Characterization and corollaries

We start this section with the following lemma (proved earlier in Kotzig [6])
which characterizes colored graphs having alternating eulerian trails and is a basic
tool in the proof of the main theorem of this paper. The proof is omitted.

Lemma 1. If G is a colored graph, then G has an altemating eulerian trail if and
only if G is connected and is equitably colored.
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Now we state and prove, using the theory of alternating chains, the main
theorem of this paper which characterizes the colorations of K, having connected
equitable colored f-factors where f=(f,.....f,) is a given sequence of positive
integers.

Main Theorem. Let K, be the complete graph with veriex set V(K,)=
{vy, ..., v,} and each of its edges colored red or blue, and lei f =(f,. f>....,f.) bea
fixed sequence of positive integers. Let r,(b) denote the red (blue) degree of venex v,
Assume that ry = r,=- - - = r,. This graph as colored contains a connecied equitable
colored f-factor if and only if

(a) each f, is even and K, has both red and blue if =(if,, Y. ..., if.) factor,
and

(b) if n=7, then for each pair of positive integers k;, k, with k,+k,<n-4,
Pt ™ Fartokp b, <byyoroand Tiry fi =351, fuor ., the following inequality holds:

K, K,
Zbi+2’nol—l>klk2' (2.1)
=1

Proof. To prove the necessity, let F be a connected equitably colored f-factor of
the given colored K,. Then by Lemma 1, F has an alternating eulerian trail
T=x,x; - x3,x,. Since F is eulerian each f; is even. The red (respectively, blue)
subgraph of F is a red (respectively, blue) if-factor of K,. Thus (a) holds.

We now show that (2.1) holds for all positive integers k;, k, with k;+k,<
n —4. Suppose there exist positive integers k,, k, with k, + k. <n—4 for which
(2.1) does not hold. Then let

X={U|.---.Dk,)- Y=(Un#|-k,-----l’n)
and

Z={vx,e1r.-->» Un—k:) =V(K,)—-(XUY).
Since k,+k,=<n -4, we have that X, Y, Z are nonempty pairwise disjoint sets.
Clearly,

Y b+ Y, r,.,_; =the number of XY-edges of K,
‘ i1
=k k,. (2.2)

Since (2.1) does not hold, we have that equality holds in (2.2). This implies that
any blue (respectively, red) edge with one end vertex in X (respectively, Y) has
the other end vertex in Y (respectively, X). This further implies that all XZ-edges
are red and all YZ-edges are blue. We may suppose that x, is in Z. Since T is
eulerian there exists an integer i, 1 <i<2pu, such that x;€Z and x,,€e XUY.
Without loss of generality assume that x;,, € X. Since T is alternating. x,. X2 is
blue and x;,,x;,3 is red; and therefore x.,,€Y and x.;€X; and a simple
induction argument implies that the edge x,,x, has one end vertex in X and other
end in Y contradicting the fact that x, € Z. This implies that (b) holds

—
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To prove the sufficiency we proceed as follows: Out of all red f-factors Fg and
blue 4f-factors Fp of the given colored K, (one such pair exists by condition (a))
choose one pair for which the number d of the connected components in the
graph Fp U Fy is the minimum possible. Let C,, ..., C, be the connected compo-
nents in such an Fg U Fg = F, (say). Note that F, is an equitably colored f-factor
of K, and each C, is an equitably colored graph and by Lemma 1 each C, has an
alternating eulerian trail. We shall prove that d =1. First we prove several
assertions regarding color constraints on C,C;-edges and then complete the proof.

Assertion 1. There is no red (respectively, blue) exchangeable trail T with respect
to Fy such that \E(TYNE(C)|< 1 for every i, 1 <i<d.

Suppose that the contrary holds. Then d>1. Let F=F,AT; A being the
symmetric difference of the edge sets of F, and T. Then F is an equitably colored
f-factor since T is an exchangeable trail. Since each C, is equitably colored by
Lemma 1, C, is eulerian and hence a 2-edge connected graph. By hypothesis it
then follows that F has fewer components than F,, contradicting the selection of
Fo.

In particular, we have the following assertion.

Assertion 2. There is no red (respectively, blue) exchangeable trail T of length 4,
hitherto referred to as a quadrangle, with respect 10 Fo with |[E(T)NE(C)i<1,
1<is<d

Assertion 3, If i#k, with 1si, k<d, and ~(G — C,) and ~(C, — C). then
each class of C, (respectively, C,) is joined in both colors to at least one class of C,
(respectively, ).

Suppose that the contrary holds. Without loss of generality assume that i =1
and k =2. Let E,, E; be alternating eulerian trails in C,, C, respectively. We may
assume that for some class of C,, A, (say) all A|A,-edges are of the same color
red (say) and A,B,-edges are of the same color; where A,, B, are the classes of
E,. If A B,-edges are red, then A, V(C,)-edges are red and by Assertion 2 and
the fact that E,, E, are alternating eulerian trails, it follows that B, V(C,)-edges
are blue implying that C, — C,. If A B,-edges are blue, then A;N B, =@ and by
Assertion 2 we have that B;A,-edges are red and B,B,-edges are blue and this
implies that C, — C,.

Assertion 4, If i#k, 1si k<d ~(CG—C) and ~(C,—C) and E=
XX+ X2,X), By =y1y2° - ya,y1 are altemating eulerian rrails in G, C, with
respect to which the classes of C,, C, are defined, then there exists an alternaring
eulerian trail Ef =2,2,+* * 23,2, of C, with {A,, B}={A}, BY} and having the

deey
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same cycles as that E, such that the following color resirictions hold:
For every integer j, all the edges

X142i%2+2p  ZrezZzeap XyayZiezy Gnd ZyXa.a, (2.3)

have the same color and all the edges

XyX1e2p  Z2Zrezp XpZy  and  Zy.X3.9, (2.4)

have the other color.

Without loss of generality assume that i=1, k=2 and c(x,x,) is red. By
Assertion 3, A, is joined in both colors to at least one of A,, B,. If A, is joined in
both colors to A, then let y;=y, and in the other case let y;=y,.,; and define
Ej=yiy5---y5Yy;. Then A, is joined in both colors to Aj and {A}%, B3} =
{Az, By} Let y5y,1Xam.1 be red. If y5,.\y5..2 is red, then let y%=y}., and in the
other case let y = y%.,-,: and further define E5 =y7y3 - - - y3.y7. Then yix, cam is
red and A7 = Aj, B3 = Bj and since Ej} is an alternating eulerian trail of C, we
have, for every integer j that

Yi<2¥3+2 isred and  yj+yj.y is blue. 2.5)

Then by Assertion 2 it follows that y3x,.5,, is blue, y3xs.,,, is red and so on
implying, by induction, that for every nonnegative integer r,

Yi+2X1szme2r iSTEQ  And Y3 X342, IS blue. (2.6)

But for each negative integer s there is an even integer k such that O0<sr=
kp - v+s and this implies by (2.6) that y{.2 X s2m+2, = ¥1e2:X1+2m+2, iS Ted and
Y2:X2m+2s is blue. Therefore for every integer r (2.6) holds. Thus, in particular,
each vertex of A3J is joined in red to at least one vertex of A|. As A=A} is
joined in both colors to A, there exists a positive integer p such that y{.,, is
joined in both colors to A,. Considering the edges y}.2,X142. 7=0,1,2,..., we
see that there exists an integer ¢ such that yi,;,x,.5 is red and yi.,X3., is blue.
Then, by Assertion 2, it follows that for every nonnegative integer r, the edges
Yiezpe2X1e2i020 Y2p-2%2+20~2, aT€ Ted and ¥3,.2X22n ¥i+2p-2X3+2,-2, are blue;
and then as in the proof of (2.6) for every r, it can be proved that for every r, the
edges

{Y'{+2p+2rxl~zn+zn YIo+2rXas2+2, are red @7

y’z,vtlrxil¢2n Y'|'+zp+2rx:+2n2r are blue,
In particular when r =—t we get that the edge y}.z,2X, is red and yi.z,_2:X3 is
blue. Define
Z,=Yie2p-2 and E3=2,2;" - 23,2).

Then A% = A% and B% = B}, E% and E, have the same cycles and further by (2.5),
(2.6) for every r and by (2.7) it follows that (2.3) and (2.4) are satisfied,
completing the proof of the assertion.
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We now state and prove the crucial assertion we need in the proof of the Main
Theorem.

Assertion 5. For every i, j, with 1<si<j<d, either C,—> C,or C;— C,.

Suppose that the assertion is false and without loss of generality assume that
i=1, j=2. Let E,, E; be alternating eulerian trails in C,, C,, respectively with
respect to which the classes are defined. We consider two cases.

Case I: There is an altemating cycle in either E, or E,.

Without loss of generality let x,x, - - - x;x, be an alternating cycle with x,x, red
and assume that it is in E, and let E|, =x,X; " * - XX = Xg141 %2142 * * * X2,.X;. Let
E;=y,¥2" " v,y We consider two subcases.

Subcase 1.1: v<1. By Assertion 4 there exists an alternating eulerian trail
E%=2z,z, " 23,2, in C, with color restrictions stated therein. Then

T, = 21.2X342iX2+21 224223425 0SjSv—1,

is a blue path with edges alternately from E(K,)— E(F,) and E(F,). Let T=
Y126 T,. Since v=<! and x,, ..., x,, are distinct vertices, we have that T is a blue
exchangeable trail with respect to F,, (note that z,,.,=2,); and consequently
F=F,AT is an equitably colored f-factor in which C;, ..., C, are unaltered (if
d = 3). Further,

v—1
(‘ . (anlxzulzz-zlz|42;X:+z,))+(-‘zwnxzwz e X2uXy)
is a connected subgraph of F which contains all the vertices of C, and C,. This
implies that F has fewer components than F,, contradicting the minimality of d.

Subcase 1.2: | <v. By Assertion 3, A, is joined in both colors to at least one
of A,;, B,, we may assume that it is A, (by relabeling E, if necessary) and
Y1+2i¥2+2; i red (by considering E3', if necessary). Now suppose that X .2,y ,.2m 15
red. Then as in the proof of (2.6) for every r we have that X;,2¢42,Y1+2m+2, is red.
Hence each vertex of A, is joined in red to at least one vertex of A,. Therefore,
there exists an integer p such that x,.,, is joined in blue also to a vertex of Az
Considering the edges xy.2p¥142» r=0, 1,2,..., it is clear that there exists an
integer q such that x,.2,Y142, is red and x,,,,¥3.2 is blue. Then as in the proof of
(2.7) we get for every r that Xy,5,42,Y142q+2¢ 15 7€d and X,.3542,¥342q+2, is blue.
This implies, for every integer s, that we have

X142:Y142(a-p)+2s 15 T€d  and  Xi.2,Y342(5-p)+24 IS blue.
By Assertion 2, we get for every integer s

X25Y242q-p1+2s 15 T€d  @nd  Xp,Y34-p)+24 is blue.
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Let r=2(q—p). Then
(el ]

T= Z (x|wZIYr4J+2[yr~2~2[x2021x3~2‘)-
j=0

is a blue exchangeable trail with respect to F,, since {<v and x,,..., Xy are all

distinct (note that x3.,=x,). Let F=F,AT. Then F is an equitably colored

f-factor in which the components Cs, ..., C; (if d=3) are unaltered. Further,
-1

Z (Ynzoz:xznlxl»zlyrqhz;)‘,uoz,)+()’.~2|»zy..2|+: Ty VY2 Yeed)
(=0

and (xz41X2142 * * * X2, X,), (note x,(,, = x,) are connected subgraphs of F having
the vertex x, in common and together contain all the vertices of C, and C,. This
implies that F has fewer components than F,, a contradiction.

Case 11. Neither E, nor E, has an alternating cycle.

Let k be the minimum integer such that there is a cycle C, (say), of length k in
either E, or E,. Note that k is well defined and since we are in Case II,
k =2m+123. Without loss of generality assume that C =x,X; * * * Xzpne X, IS in
E,=x,x3" " x2,X, where xy,.2=x, and x,x; is red, a consequence of which is
that x,X24, is also red. By Assertion 4 there exists an alternating eulerian circuit
E%=1z,z, " 25,2, in C, satisfying the color and cycle restrictions stated therein.

Define [* to be the smallest positive integer such that z;..,€{z,, z5,..., z;+}. By
the selection of k, [* we have that [*=k.
We first prove
edge x,25 is blue for 1< j=<[41*] (2.8

By Assertion 4 we already have that x,z, is blue. Suppose then that for some j
with 2=<j=<[3{*], the edge x,2,; is red. Let p be the smailest such j=2. Let
€| = XXz, €2= X3, X2,. If €, =€;, then x; =x;,_; and x; = x3, and by (2.3) X224,
is red contradicting the minimality of p. So e, # e,. Using (2.3), (2.4), the fact that
X322,-2 is blue and Assertion 2 repeatedly we get that Xy.uu-nZ2p-242p0-11=
X1Z2p-3 and 2,_,X,, are red. Therefore

T =(X1235-3225-2X2p%25 -1 22p-1Z2p%2X1)

is a red exchangeable trail with respect to F, as the vertices 2,,_3,..., 25, are
distinct. So F=F,A T is an equitably colored f-factor in which

(X1 X2u X201 " * * X2pZ2p-222p-1X2p-1X2p-2 " * * X2Z2pZ2p+1 ' * * 222422 " * Z2p-3X1)

is a connected subgraph of F containing all the vertices of C, and C,, a
contradiction. Therefore (2.8) holds.

Then, by Assertion 2, we get successively for i =3,4,...,1* that whenever
isi+2j=s[*,
blue if i is even,

ed if i is odd. @9

edge x,z..y is
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Also (2.8), (2.3), (2.4) and repeated use of Assertion 2 imply that the edge
X24(2uv-11Z2)+2uv-1 = X1 Z2)-1 15 red whenever 1sj=<[4l*), ie.

edge X,Z,.2 is red whenever 11+2j=<{*-1. (2.10)

Now we consider two subcases.

Subcase I1.1: I* is odd. Let I* =2r+1. Then by the minimality of k, m =<,
Also as there are no alternating cycles, equivalently even cycles, in E; and hence
in E3, we have that z,.,, = z3,,, for some integer p =0. This means that the edge
Z3,4122,42 = 22,0122p+1 18 red. Therefore by (2.9) and (2.10), T=
(X1 X2m-122,4122p+1%,) IS @ red quadrangle with respect to Fg, contradicting Asser-
tion 2.

Subcase 11.2: I* is even. Let [* =2r. By the minimality of k, 2m+1<2r,
Then z,,., = z,, for some integer p, 1 <p<r—1; and as there are no alternating
cycles in E3, p= 1. this means that z,,z,, is blue. By Assertion 2, with the cycle
(222X, X2m+122) We have

edge z,x,,,., is blue. (2.11)

If p =1, then by (2.9) and the fact that 2m + 1 =2r, (22,Z3X2m+1X2m22,) is a blue

quadrangle with respect to F,, contradicting Assertion 2. Thus we may assume
that p>1. Observe that in E,, by the minimality of k. the vertex
xs € {x,, X5, X3, X5} even if k=3 and is clearly so if k=5. If now k>S5, then by
(2.3), (2.4) and (2.9) it follows that

T =(22,Z2pXaX52322X3m + 1 X2mZ2¢)
is a blue exchangeable trail with respect to F,. Let F = FoA T. Then the alternat-
ing chain in F, namely

(22 XmXam-1** " X52Z324° " " ZpXaX3X2X | X2, X2

Xam+12221220220-1" " " 22041 = Z2p22p4122pw2 " Z2/)
contains all the vertices of C, and C, implying that F has fewer components than

F. a contradiction. Thus we may assume that p>1 and k <5.
Now as p=2, so I*+1=2r+1=2(p+1)+1=7. Hence by (2.8) and (2.9)

X323, X425, and  X¢Z,, are blue. (2.12)

Also as x,zy,-, is red by (2.10) and using (2.3) and Assertion 2 on
(x1225-122,X2), We get

Z3pX2 = 22,41 X2 iS blue. (2.13)

If, moreover, k =2m +1=3 then z,x; is blue by (2.11) and so by (2.4), (2.12)
and (2.13) we have that T =(z;,.,%2X32223X5X42,,) is a blue exchangeable trail
with respect to F, since z,,..., z,, are all distinct vertices and x,x; # xsx4 Since
x4=X,. Let F=F,AT. Then F is an equitably colored f-factor and

(Z2r41X2X X2, X2, -1 " * XSZ3Za " " " Z2pZ2pet " ° ° 22, X4X3Z22122,225-1 * " ° Zap41)
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is an alternating chain in F including all the vertices of C, and C; and as above we
get a coatradiction.

Thus we have proved that p=2 and k =2m + | =5, This implies, by (2.11}, that
2,xs is blue and hence, using (2.3), (2.4) and Assertion 2 first on (z;z;x.x,) we get
that z,x, is red and then on (z,2;x,x;) we get

z4X3 is blue. (2.14)

If p=2, then 2,,2, is blue as z, = z,, = z,,,,. So by (2.4), (2.12) and (2.14) we
see that (z3,z,x3x;) is a blue quadrangle contradicting Assertion 2. So p=3. Then
by (2.4}, (2.12), (2.13) and (2.14) we get

T =(z24X3X222p = 22,41 22 X6X7Z524)

is a blue exchangeable trail with respect to F, since z,,..., z,, are all distinct
vertices and X;Xj # X¢X4 since xg = X,.
Let F=F,AT. Then F is an equitably colored f-factor in which

(X1 Xzu X2 -1 " * " Xa925Z6 " * * Z2X6XsXaX32a23Z221Z2,220—1 " * * 2201 = Z2pX2Xy)

is a connected subgraph of F containing all the vertices of C, and C,, and as
above we get a contradiction.

This completes the proof of Assertion 5.

Define a directed graph D whose vertex set is V(D)={C,, ..., C,} and whose
arc set is E(D)={(C,C): 1=i#j=d and G, — C}}.

Assertion 6. D is a tournament without any cyclic triples.

That D is a tournament follows from Assertion 5 and the fact that both C; = G
and C,— C; cannot hold. Let, if possible, (CCC,C;) be a cyclic triple in D.
Without loss of generality assume that i =1, j=2 and k =3. Let xy,x,2, X2,X32
and x,,x5, be red edges of C,, C, and C;, respectively such that x;, is joined in
red to all vertices of V(C,,,) where the suffix i + 1 is to be taken modulo 3. Then
T =(x,1X22X21X32X2,X,2X1,) is a red exchangeable trail with respect to F, satisfying
the condition of Assertion 1, contradicting its conclusion, this completes the proof
of the assertion.

Assertion 6 implies that D is a transitively oriented tournament. So there exists
a vertex of D; say C,, such that C,—C, for every i, 2<i<d. Let Z=
Utz V(C).

Assertion 7. All the A,Z-edges are of the same color and all B,Z-edges are of the
other color.

Suppose that the contrary holds and without loss of generality assume that
A, V(C,)-edges are red and A, V(C;)-edges are blue and C; = C; with A, V(Gy)-
edges red. Then since C,— C,, B,V(Cy)-edges arc red. Let x,x3 1<i=3,
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be a red edge of C with x,e€A, and x,€B, !=<i<3 Then T=
(X{1X22X2,X32X31X 12X ) is a red exchangeable trail with respect to F, satisfying the
condition of Assertion 1, a contradiction.

Let |A || =k, and |B,|= K,. Then since d=2 and A,UB, = V(C)) it follows
that k, +k,=<n—4. Assume further that A,Z-edges are red:

Assertion 8. There exists a blue A\A,-edge or a red B,B,-edge (such an edge is
not in F, as A\NB, =9).

Suppose that this is not true. Then
every blue (resp. red} edge with one end vertex in A, (resp. B,)
has the other end in B, (resp. A|) (2.15)

Let ue A,, ve Z, we B,. Then

ru)=rc(u)zk ~l+n—k—ky=n-k,—1,
and
rw)=rc(v)sn—k,—k,—2+k,=n-k;-2,

since there is at teast one ZZ-blue edge at v. Therefore r(v) <r(u). Also since
ki+k,<n—4, r(w)=rg (w)=k sn—k;—2<r(u). Therefore A;={v,,....0}
and 1, >r .y, and since 7, +b, =n—1, it follows that b,, <b,,.,. Similarly we get
that By = {Uysy-kp Unezekg- - s Unbs Bnatoky > bno, @0d 1y, > 1y g, Since C is a
bipartite graph with the bipartition A, B,, we have also that Y5, £ =%, fa.\ -,
Then by (2.15) it follows that

k k

Y b+ Y ra=kiks,
iot i=1
contradicting condition (b) of the Main Theorem (see (2.1)).

Now we are ready to complete the proof of the Main Theorem. By Assertion 8.
we may without loss of generality assume that x,x,,., is a blue edge for some
positive integer p where x,€ A|. Note that x,x;,., € Fp. Let E, =x,x;" " * X3, %
and E;=y,y,* - y2,y: be alternating eulerian trails in C, and C, respectively,
with the edges x,X;, y,y, blue. Then T =x,X3,4,X3,,2Y1¥2X2X,, is a blue ex-
changeable trail with respect to F;,. Let F = Fo A T. Then F is an equitably colored
f-factor in which Cs, ..., C, are unaltered and

S=X1Xzp41X2p "t " X2¥2Y3 " * Y2 Y1X2p42X2p43 T " X3 X,
is a connected subgraph of F containing all the vertices of C, and C,. This implies
that F has fewer components than d, a contradiction. (O

From the above theorem we have the following corollary.

Corollary 2. Under the notation of the Maf:t__ Theorem, the colored complete graph
K, contains a connected equitable colored 2s-factor, where 25 =(2s,...,2s) is of
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length n and s is a positive integer, if and only if condition (a) of the Main Theorem
and condition (C.1) below are satisfied:
(C.1) If n=7, then for every positive integer k <4(n —4) we have

1 k
Y b+ T >k
=1

=1

Proof. We need only note that (C.1) implies condition (b) of the Main Theorem
and that the necessity of (C.1) has been established in the proof of the necessity of
the Main Theorem.

Remark 3. It may be remarked that a connected equitably colored 2-factor of the
given colored K, is an alternating hamiltonian cycle and therefore conditions (a)
and (C.1) of Corollary 2 are necessary and sufficient for the existence of an
alternating hamiltonian cycle in the colored K,, a result proved earlier by
Bénkfalvi and Bankfalvi [1] answering a problem of Erdés.

We further deduce the following corollary for self-complementary colorations
of K,. To this end, we need the definition of a particular self-complementary
coloration of Ky, denoted by KX¥n. Let V(K n) ={v,, ..., vg}. For distinct i, j,
the edge v is colored red if and only if 1<i<j<2N; or 1<i<N and
2N+1=<j=<3N;or N+1=<i<2N and 3N+1=<j=<4N: and all the other edges of
K are colored blue. It is easy 1o check that the permutation & of V(K.n),
namely

0 = (V103541 Un+1 V3N w1 UaU2na2Un42Usns2 " * ° UnUanUanUan

is an isomorphism from the red subgraph oato the blue subgraph of K%y and
therefore K3y is a self-complementary coloration of K n.

Corollary 4. Given a self-complementary coloration of K,, n=8, different from
K'in, then under the notation of the Main Theorem, the following are equivalent:
(1) For every k<i(n-4) with n, > r,,,,

L3 k
T rn<k(in—k-1+Y rogiy (2.16)
I=1 i=1

(2) The red subgraph (or the blue subgraph) of K, has a hamiltonian cycle.
_ (3) The given colored K, has a connected equitably colored 4-factor, where
4=(4,...,4) is of length n.
Further if n=0 (mod 4), then (1), (2), (3) and (4) given below are equivalent.
(4) The given colored K, has an alternating hamiltonian cycle.
(Also for K3y (N22), (1), (3) and (4) hold).

Proof. That (1) imples (2) follows from the Main Theorem B of Rao [9]. To
prove that (2) implies (3), let C be a red hamiltonian cycle in K, Then o{C)
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where ¢ is an isomorphism of the red subgraph of K, onto the blue subgraph is a
blue hamiltonian cycle. This implies that CUo(C) is a connected ecquitably
colored 4-factor of the given colored K,. That (3) implies (1) follows from (2.1) of
the Main Theorem of this paper and the facts that in any self-complementary
coloration , = b,, -, and .+ b, =n—1, 1 <i<n To prove the equivalence of (1),
(2), (3) and (4) when n =0 (mod 4), we shall prove that (1) and (4) are equivalent.
Already we know that (4) implies condition (b) of the Main Theorem for
f=(2,...,2), of iength n, which proves that (1) holds since the coloration is
self-complementary. To prove that (1) implies (4), we observe that (1) implies (2)
and therefore the red subgraph (or the blue subgraph) of K, has a red (blue)
hamiltonian cycle and since the coloration is self-complementary, the blue sub-
graph also has a hamiltonian cycle. Since n=0 (mod 4), so the red (resp. blue)
subgraph has a 1-factor and hence condition (a) of the Main Theorem is satisfied
with f=(2,...,2) of length n. Also, since we have a self-complementary colora-
tion, (2.15) implies that condition (b) of the Main Theorem holds. Hence by the
Main Theorem the given colored K, has an alternating hamiltonian cycle. O

We conjecture that the following are necessary and sufficient conditions for the
existence of a connected equitably colored ﬁ-fac(or, where 25 =(2s, .. ., 2s) is of
length n, in self-complementary colorations of K, where n=0 or 1 (mod4)
(under the notation of the Main Theorem).

(1) (ry=s,...,r,—s) is a graphic degree sequence.

(2) For every k<¥{n—4) with ,>r,.,,

k k
er,<k(n—k—l)+ Y fares
i= j=1
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