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The theory of least squares when the parameters are stochastic
and its application to the analysis of growth curves

By C. RADHAKRISHNA RAO
Indian Statistical Institute, Calcutia

1. INTRODUCTIOK

In an earlier paper {Rao, 1959), the author discussed the method of least squares when the
observations are dependent and the dispersion matrix is unknown but an independent
estimate is available. The unknown dispersion matrix was, however, considered as an
arbitrary positive definite matrix. In the present paper we shall consider & class of problems
where the dispersion matrix bas a known structure and discuss the appropriate statistical
methods.

More specifically the structure of the dispersion matrix results from considering the
parameters in the well-lmown Gauss-Markoff linear model as random variables. Let Y be
& vector random variable with the structure

Y =A T+ ¢, (I
x1) tpem) poxd)  (pal)

where T and € are unobservable vector random variables of dimensions m and p respectively
and Aisap x mmatrix of known coefficients with rank equal to m (without lossof generality).

Further let B(T)=~, Elg=0,
D(T)=eA, D(e)=eX, (1-2)
C(T,e) =0,

where E, C and D stand for expectation, covariance and dispersion respectively and e is
& known constant. As a consequence of (1-2)

D(Y) = elAAA’ +Z). (1-3)

Let f-1S be an unbiased estimate of (AAA’ +E) which is stochastically independent of Y.
Under the set up (1:1)~{1-3), we shall considor the problems of estimating (predicting)
linear functions of the random variable T and linear functions of the parameter v. The
bl of infe are ined under the additional assumptions

T ~ Nyfx,eh), € ~ N0, eE)
S~ W,(f,A'DA +T), }

where N, denotes a k-dimensional normal distribution with mean and dispersion matrix
a8 indicated within the brackets and W, represents a p-dimensional central Wishart dis-
tribution with deg of freedom and dispersion matrix as indicated within the brackets.
(The symbol ~ is used for ‘distributed as’.)

The particular case when Z = ¢®I, which is of practical interest, is examined in detail.
The methods derived are &pplied to the analysis of polynomial growth curves, and the
reaults are pared with those obtained by using other methods (Rao, 1959; Elston &
Grizzle, 1962; Potthoff & Roy, 1964; Elston, 1964).

(1-4)
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The model (1-1)-(1-3) is a special case of a mixed effocts linear model
Y = Atr+By+e¢, with A=B, (1-5)

where T is a vector of fixed effeots, y is a vector of random effects with exp. ion zero and
¢ ia & random error veotor with expectation zero. Such a model in the general case when
A # B has been studied by several authors (Duncan, 1960; Henderson et al., 1959) under
simpler assumptions on the covariance structures of y and e. The special case considered
in this paper leads to & satisfactory solution for the problem of inference on the unknown
parameter 7 under less restrictive conditions on the dispersion matrices of y and e.

2. EstmaTioN ofF T AND T

‘We shall present the results on the estimation of linear functions of T and ~ in a series of
lemmas.

Levma 1. Let P'T be a linear function of T and a+ @'Y be a linear estimator (prediclor)
of P'T. Then the optimum values of & and B, for which E(P'T —a—p'Y)? is a minimum, are
a* =vP-7ABY, }

B* = (AAA'+Z) AAP
and the predictive efficiency E(P'T —a* —B*'Y)t is

1)

eP’AP —¢P'AA’(AAA’ +E)- AAP. (2:2)
The result quoted in Lemma I is simply the linear regression function of P*T on Y and
provides a complete answer to the estimation (prediction) of the random variable P'T

when v and the dispersion matrices A end T are known, When < is unknown the result of
Lemma 2 provides a satisfactory solution.

Leyma 2. The optimum values of a and B for which

(i) E(P'T—a—p'Y) =0 for all values of <, (2:3)

(i) E(P'T—a—p'Y) is a minimum (2-4)
are @* =0,p* = Z1AAZ-IA)IP (2-5}
andthe predictive efficiency is ¢P’(A'EA)P. (26)
Consider

E(P'T-a*—p*Y) = E[P'T-P(AZA)'AZ- AT +¢)]=0
80 that the condition (2-3) is satisfied, If &, P are any arbitrary values meeting the condition
{Z3)then PR 4 gY) = Pr-a-pAt=0sa=0P= A
For any such «, 8, it is easy to verify that
{B—p*rEp* =0
80 that E(P'T-RY)=Ep'e"
= B[a*¥e+(B—p*) P
= B(B%0) + E[(B—B% e
> B(p*et = (P'T-p*Y),
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which proves the required result. The predictive efficiency is
E(B%e) = eP/(AT'A)IP.

It is interesting to note that the condition (2-3) yields a predictor which is not only
independent of T but also of A. Further the predictive efficiency is also independent of +
and A. In the special case E = o*I the optimum value of B is

B* = A(A'A)'P,
which is independent of o* also. The predictive efficiency is 0?P(A’A)-! P which, however,
involves o%.

We shall now ider the estimation of & linear p ic function P’z by a linear
funotion @+ @'Y of the random variable Y.

Lemma 3. The optimum values of a, B for which

(i) E(P's—a—P'Y) = 0 for all values of =, (27)
(i) B(P'v—a—f'Y)! iz a minimum (28)
are a*=0, f*=L1A(AZ'A)'P. (2:9)

The variance of the estimalor 1a
eP’AP +¢P'(AZ-'A)1 P, (2-10)

The condition (2-7) implies that « = 0 and A’B = P in which case
E(p'Y —P't)* = eP’'AP +¢f'Zp.

Then the problem is that of minimizing the quadratic form B"EB subject to the condition
A’ = P. Insuch a case it is well known that the optimum value of 8 is * as given in (2-9).
It may be noted that the linear unbiased mini: variance esty of P is independ

of A and ia the same as the best predictor of P'T aa in Lemma 2, but the variance of the estimator
of P'x depends on A. In the special case E = o'l
£* = A(A'AP,

which is independent of o* also. Thus the least-square estimator of P'x under the covariance
structure D(Y) = AAA’ +0*l is the same as when the components of Y are uncorrelated.
The expressions for the variances are, however, different.

In therest of the di ion we shall ider the epecial case Xl = o] with an independent
unbiased estimator f-!S of AAA’ + *]. Lemma 4 gives unbiased estimators of % and A.
Lznmua 4.

Eltrace(I—A(A’A)A')(S +¢'YY')] = (p—m) (f+1)0? (211
B((A'A)V A'SA(A'A) — f3HA'A)Y] = fA, (212)
where 8% is the expression within the expectation of (2-11) divided by (p—m) (f+ 1).

The expression (2-11) is equal to
trace {(I- A(A’A) 2 A') [B(S)+ E(e~YY)]}
= trace [(1 - A(A’A)1 A') (AAA’ + o) f]
+trace [(1— A(A’A)"A') (AAA’ + o'l + e-'Arv'A"))
= trace [(f+1)o* (I~ A(A'A)PA")]
= o%f+1)(p—m).
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Starting from the equation E(S) = f(AAA’+ o*]) and multiplying both sides by suitable
matrices the result (2-12) is deduced.

Lemmaa 1-4 contain general results depending only on the first arid second order moments
of the variables T and €. We shall now assume specific distributions for the variables in-
volved and deduce some results which are useful for drawing inferences on the unknown
variables and parameters. Lemma 5 contains the key results in this direction. Wo also
introduce a new definition which is rel in the di ion of Lemma 65 (see also Fraser,
1958).

DermtTioN. Let X be & vector valued random variable whose distribution depends on
8, a vector of unknown parameters (0,, ..., 8,,). Furtherlet T = (1}, ...7}) be a vector valued
function of X such that the distribution of T depends only on ¢ = (¢,,...,8,), some
functions of 8. Then T is said to be inference sufficient for ¢ if the conditional distribution of
X given T depends only on parametric functions of 8 independent of ¢.

Lexya 5. Let T ~ Ny(Av,efd), € ~ N (0,e0tl) and S ~ W,(f, ARA’ + 0*]) be all stochastic-
ally independent. Further let©® = A + 0*(A’A)'and G = trace [(I - A(A’A)TA') (S +¢'YY)).
Then

(i) Z=(AA)'AY ~N,(v,e0) and U= (AA)(A'SA)(A'A)! ~ W, (f,0) are
stochastically independent.

(ii) Z and U are inference sufficient for the parameters v and ©.

(iii) (T —2) ~ N,(0,e03(A'A)") and G ~ o2x® (p—m) (f + 1) are stochastically independent.

1t is easy to deduce all the results (i)-(iii). As an example, we demonstrate (ii).

Let B be a p x (p—m) matrix of rank (p — m) and with its columns orthonormal to those
of A,i.e. A'B = 0. Then the following are true:

(a) A'Y ~ N, ((A’A)7,eA’AOA’A) and B'Y ~ N, (0,e03BB’) and are independent.

(b) Therandom matrix A'SA A’SB)

B'SA B'SB
has Wishart's distribution on f degrees of freedom with the dispersion matrix
A'ABA'A (O
(] o?B'B,
80 that the exponent of the density in Wishart’s distribution consists of the sum of two
expressions one involving A’SA and A’ABA’A and another involving B’SB and ¢2B'B.

Now, writing the joint density of A’Y, B'Y and A’SA, A’'SB, B'SB, we find that it is the
product of two factors, one involving A'Y, A’SA, t and © and another involving o* only.
Thus A'Y, A’SA are inference sufficient for + and © and so also are Z = (A’A)-*A’Y and
U = (A’A)? A'SA(A’A)), which are one to one functions of A'Y and A'SA.

3. INFERENCE ON T aND ©
Test for the model (1-1)~(1-3). In problema of inference on T and =, it is relevant first to
examine whether the model (1-1)-{1-3) is true. We shall develop a test for this purpose
based on Y and S, using the principle of the likelihood ratio. It is, however, convenient to
test the bypothesis about the truth of the model (1-1)~(1-3) in two parta.
First, to examine on the basis of S whether the dispersion matrix is of the form

A’AA + oL
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For this we ider the two al ive distributi
8 ~ W,(f,T), T arbitrary
and S ~ W,{/, AAA’ +0%T), A and o* arbitrary.

Maximizing the densities in each case with respect to the arbitrary parameters and taking
the ratio, the likelihood ratio test criterion is found to be

[IA'AL s '
|A’SA|iI[ﬁln-mS(l—A(A’A)-‘A')]"b_m

A=

(31)

If f is laxge, the atatistic — 2 log, A4 can be used aa x* on §((p —m) (p+m+ 1)— 2] degrees
of freedom.

Secondly, to examine on the basis of Y and 8 whether the expeotation of Y is of the form
Ar, without assuming any structure for the dispersion matrix. A test for this was given in
the 1059 paper of the author. The statistio to be used is

(f—p+tm+1)
e(p—m)

which has the variarpe ratio distribution on (»—m) and (f—2p+m + 1} degrees of freedom
(p.¥.).
Confidence intervals for linear functions of T. It has been shown in (iii) of Lemma, 5 that

(T—Z) ~ Np(0,e0%A’A))
and G~ ot (@-m)(f+1),
where Z and @ are functions of Y and S as defined in Lemma 5. Further T—Z and G are

independently distributed from which it follows that P'(T—Z) ~ N,(0,eatP’(A’A)) P}
and @ are jind dently distributed. Hence substituting the esti of o based on @,

P/(T-Z) + [eP'(A’A)-1 Polt, (3-3)
where v = [(p—m)(f+1)]-1 G, has a ¢-distribution on (p —m) (f+ 1) 0.». Hencea confidence
interval for P*T with (1 —a) probability is

P'Z+[(eP'(A"A) Po)ltey,, (3-4)

whare #;,, is the upper ja point of the t-distribution on (p—m) (f+1) D.7.
Simultaneous confidence intervals for P*T where P is arbitrary are

P'Z 4 (eP'(A’A)-1 PomF )b, (3-5)

where F, is the upper a probability value of the F-distribution on m and (p —m){(f+1)D.F.
Confidence intervals for linear functions of <. It has been ahown in (i) of Lemma 5 that

Z ~ N,(z,e0), U~ W,(f,0)
and further that Z and U are indepenmmrit, where U and Z are as defined in Lemma, 5, Henoce
P'(Z—7) + (f1eP'UP). (38)
has a ¢-distribution on f .¥ Thus a (1 — ) probability confidenoce interval for P’z is
P'Z 1 (f P UP)e,. (37)

[Y'S-1Y —Y'S-1A(A'S-1A)-1 A'STY], (39)
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Simultaneous confidence intervals for P'z, where P is arbitrary, are

vy  [emP'UP 4
PZt _m“F.] (38)
whrere F, has m and f/~m+1D.F.
4. ESTIMATION OF POLYNOMIAL GROWTH CURVES
During recent years there have been a ber of papers d d to the estimation of

polynomial growth curves (Rao, 1959; Elston & Grizzle, 1962; Elaton, 1964; Potthoff
& Roy, 1964) and to the comparison of growth curves (Wishart, 1938; Leech & Healy,
1959; Rao, 1968, 1961). Based on the discussions contained in these papers and in the pre-
sent paper it is now possible to suggest a systematic approach to this problem.

1. As a first step we replace the measurements at different time points of growth of an
individual by orthogonal polynomial regression coefficients (0.r.8.0.). Thus if yy,...,y, are
the measurements on an individual at p time pointa, then the regression coefficients are

=2[:!Il¢(/ #=0,...,p-1), (1)
where ¢,; is the value of the ith degree orthogonal polynomial at the jth time point.

Nothing is lost by replacing y,, ..., y;, by the 0.p.. coefficients by, ...,b,_, as both sets are
equivalent. Then the data consist of independent observations (say n in number) on the

vector variable (b, ... ,_,)
The values of ¢, as given in statistical tables are not usually standardized. They may
be used as such in computing d,, and at the final stage of eatimation of the true reg

coefficients, the necessary adjustments can be made by using multiplying factors.
2. The second step is to obtain the sample mean and the corrected sum of products
matrix for the observations on (by, ...,b;_,),

BoreonBpss } )
(8y) G.j=0,...,p—-1)
which may be represented in matrix notation by b and S respectively.

3. The third step is the most important, which is to examine whether a subset of the
0.p.B. coefficients is inference sufficient. This depends on the degree of the polynomial of
the assumed growth ocurve and also on the structure of the true dispersion matrix of
[ N R

In practice, the degree of the polynomial and the covariance structure are unknown
and are themselves to be inferred from the available data and hence a careful approach to
the problem is needed. If the degree of the polynomial is k, then b,, ..., b, have (after stan-
dardization) as their expected values the true coefficients of the polynomial S, ..., £, and
inferences may be drawn on the true values using the observations on (b, ...,b,) only. This
is the basic approach of Wishart (1938), Elston & Grizzle (1962) and also of Potthoff &
Roy (1864). The last authors, h , use a diffe set of (k+ 1) reduced values obtained
from the original p values, which are arbitrary to some extent, depending on the accuracy
and relevance of previous information about the dispersion matrix of the original measure-
ments,

The main departure in the present approach is to ine whether in addition to by, ..., b
some of the higher order 0.r.x. coefficients by, ..., b,—_,, Whose expectations are zero when
the degree of the polynomial is &, yield information on g, ..., 8, through their correlations
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with by, ...,5,. Then we can hope to obtain improved estimatea of f,,..., f; by making
covariance adjustments choosing some of the coefficients in (bxyys ..., b,_,) 28 concomitant
to the main coeficients (b, ...,b,).

The method developed in the 1959 paper of the author is equivalent to using the entire
remaining set b,y ..., b,_; 83 concomitants. But this may not be the optimum procedure
(see Rao, 1949). The choice of a suitable subset may be more profitable, especially in small
samples, when all the correlations between the main and concomitant coefficionts are not
high. Further p may be large compared to n and quently the degrees of freedom for the
estimation of error will be small if a large number of concomitants are nsed. Such a situation
was faced in the comparison of growth rates discussed in another paper (Reo, 1961), where
only a few extra coefficients were computed to begin with and among them only one was
chosen for covariance adjustment.

It would indeed be simpler if (b, ...,b,) alone were inference sufficient for (8, ..., fy).
This is the case if the measurement on an individual at time ¢ can be written

% =Tobol) + T it) + ... + T u(t) + 6 (4:3)

where @y, ..., $;. are orthogonal polynomials, T, ..., T} are random variables specific to an
individual and ¢, are such that

Ele) = 0,E(e]) = 0%,cov(6,,6,) =0 (h + h); }

cov(T;,€)=0 forall iande (a4

In such a case the dispersion matrix of the coefficients by, ..., ., is of the form

(3 321)' (#5)

where A is of order (k+1)x (k+ 1) and I is of order (p—k— 1) x (p—k—1).

We can use the test (3-1) developed in §3 for examining the validity of the model (4-3)
leading to the covariance structure (4-5) for the coefficients by, ...,b,_;. It may be found
that some of the cross-correlations between the sets (by, ...,b,) and (byyy, ..., b,_,) are not
zero as assumed in the model, in which case some of the variables in the set (., ...,0,_,)
may be chosen for covariance adjustment. We shall illustrate the next steps in the analysis
of data through some numerical illustrations.

The estimates b, S based on the data of Elston & Grizzle (1962), the correlation matrix
R derived from S and the F statistic (square of ¢) for testing the significance of each observed
average individually are given in Teble 1. Because of symmetry, ouly the elements of S
in the diagonal and above it are shown and in the case of R, only elements below the diagonal
are shown. The sample size was 20 so that the degrees of freedom for F are 1 and 19.

Table 1. Analysis of data for ramus height in 20 boys measured al four ages

5 Fiu 8 and R matrices
I ~
5, = 200-30  8005° 1804-500 138-700 ~14-888 —22:800
5= 033 81-24¢ 0-1233 845-162 15-874 —124-758
b, = —009 018 —0-0827 0-1617 18-978 -3712
b= ~004 0-01 —0-0829 —0-5812* ~0-1084 80-028
* Indicates aignificance at 1% level.
9 Biom. 53
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1t is olear from the preliminary analysis of Table 1 that the degree of the polynomial
may be taken to be unity so that b, and b, are tho main coefficients, and a possible candidate
fora i i8 by, the correl bet byand (by, b,) boing emall. Thus we may con-
sider by, b,, b, for drawing inferences on f,, #,. We shall, howover, demonstrate the use of the
tests developed in the present paper to support the preliminary conclusions.

(i) For testing tho significance of 5, and 5, simultancously we use Hotelling’s T*, which in
the present case has a small value. The general formula for 7'® for testing the significance of
the observed average coefficients b,,, ...,5,., is 84 follows. Let

s'__:(sul.k»x S’Hl,p—l), (4-8)

D=1 kst vt #-1,p-1

which is tho portion of the S matrix relating to the coefficients b, ....b,_,. Denote by
b, the column vector of b, ...,5,_;. Then

Tt = nb;S;!b, (+7)
in which case noprirl ™ (4+-8)
p—k-1

is a variance ratioon (p—&—1) and (n—p+ &+ 1)D.F.

(ii) For testing the covariance structure which implies the sufficiency of b,,...,4,
for estimating a kth degree polynomial, the test based on the S matrix of b....,b,_,, may
be stated

o A=AAs (49)

In (4-9) (4-10)

S|
perlSL
POISITS
where S, is the submatrix of $ corresponding to b, .., b, and
S,

= ==1
Opyyore Gyt 8

Ay (411
where a, is the sum of squares of tho unstandardized values of the orthogonal polynomial
of degree i as givon in the statistical tables used, and

=1 =1
8= ai!ﬁ_‘“‘_'-"”l:__k:-: S, —=hp-l (412)
The test based on A,, using —(n—1)log, A, as approximately a x* on (p—k—1)(k+1)
D.F., is enough to judge the inference sufficiency of (b, ..., b;). The test based on A,, using
—({n—1}log, A, as approximately & x* on §{(p—k—2)(p—k+1) D.F., examines the inde-
pend and h dasticity of the error terms ¢, for an individual growth curve,
The corbined statistic

X =—(n—1log, A;—(n-1)log,A, (+13)

can be usod as & x* on {(p—k—1)(k+1)+4(p~k~2)(p—%+1)]) D.F. to test the model
(4-3) a8 & whole for a growth curve. The statistio (4-8) aa dofined in terms of tho S matrix
of the coofficionta (transformed variablos) by, ...,b,_, is the samo as the statistic (3:1)
defined in terms of the S matrix of the original measuroments.
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In the preeent example choosing k = 1, we find that A, = 0-6358 and A, = 0-8778,
giving X} = — 101og, (0-6358) = 8-61
on 4D.F. and X3 = —19log, (0-0778) = 0-43

on 2D0.F. The value 8:810 for y* on 4 D.F. js high enough to warrant the use of concomitant
variables.

Table 2 gives the estimates of §, and 8, without using any concomitants, using 4, alone
and using both b, and b, as concomitants. The method of covariance adjustment in the
general case is explained in Appendix 1. It is seen from Table 2 that it is profitable to nse
by alone a8 & concomitant.

Table 2. Estimale and width of 95 %, confidence interval

Adjusting for concomitants

Using only
Parameter [N by by, by
fo: Estimato® 50-07 50-07 5005
Width 234 2:31 2:48
B+ Estimate® 046685 0-4629 04054
Width 0-273 0227 0-249

* The multiplying factors for 5, and b, aro § antl -4, reapectively.

Let us now consider the example of Potthoff & Roy (1964) and compare the estimates
given by them with those obtained by the present method. The estimates b, S and R are
given in Table 3 together with the F statistics as in Table 1. It is clear from the preliminary
analysis that the degree of the polynomial may be taken to be unity and because of the low
correlations between (g, b)) and (bg, by) covariance adjustment is not profitable. Thus we
can draw inferences on f,, 8, based on (b, ,) only. The estimates so obtained are com-
pared with the estimates given by Potthoff & Roy (1964) in Table 4. The multiplying factors
for (b, b,) are the same 29 those used in Table 2. It is seen from Table 4 that the method
proposed in the present paper provides slightly more efficient, estimates. In other sit

Table 3. Analysis of measurements made in dental study of 16 boys

5, Fiu 8 and R matrices _
b, = 99-8750 2082¢ 802-7500 —5-6250 ~ 35-8760 = 2137500
5, = 15:6875 58-03° —0-0083 990-4375 -01-4375 105-8750
5, 0-8125 1-88 —0-1383 —0-3162 84-4375 4-6250
B =—1-1250 026 = 02221 0-0087 00148 | 1161-7500

¢ Indicatos pignificance at 1% lovel.

Table 4. Estimate and width of 96 %, confidence interval

Using Method of Potthoff
Parameotor b, b, & Roy
By: Estiruate 24-969 26111
Width 1-:48 1-841
b Estimate 0-7844 0-7866
Width 0428 0-471

299
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where the use of concomitants is indicated there may be considerable loss of efficiency by
using the method of Potthoff & Roy. For other comments on the method of Potthoff &
Roy the reader is referred to Appendix 2.

There is an important point in the statistical analysis which needs some caution. We
have not taken into account the fact that the concomitant variables are selected on the
baais of certain tests on the observed data and consequently the number and nature of the
concomitant variables may vary from semple to sample. The precision is likely to be over-
estimated if no adjustment is made for such & selection of variables. Any theoretical in-
veatigation of this problem is likely to be extremely complicated. Similar problems arise in
many other situations involving preliminary tests of significance intended to examine the
underlying probability model used in the final statistical analysis. In such problems pre-
vious experience will also be a good guide. It may be noted that in research work, one ia not
faced with an isolated problem of estimatiog a single growth curve. A series of such curves
will be studied under similar conditions involving routi timation of the polynomial
growth coefficients and in some cases a comparison of such estimates. It should be poasible
to arrive at a suitable set of concomitants for such purposes by an analysis of previous data.

The method of estimation of the polynomial coefficients described above can be extended
to the comperison of growth curves under different experimental conditions (treatments)
using any suitable design. The firat step is to replace the observations on each individual
growth ourve by the 0.r.R.0. The number of 0.P.R.C.’s may be smaller than the number of
observations on each curve, The second step is to obtain an analysis of dispersion consider-
ing the 0.r..0.’s a8 multiple measurements, appropriate to the design of experiment used.
We thus obtsin dispersion matrices due to treatments and due to error which are used in
further analysis. The main interest of analysis of data is to estimate the differences in
growth curves (or the 0.P.2.0.’s ) caused by the treatments. Then we have the problem of

examining which of the 0.p.r.0.’s (or their functions) are unaffected by treat and the
possibility of using them as concomitants in estimating the differences in other 0.P.r.C."s
(or their functions). Such questions can be ined by analysis of dispersion.

Ap interesting example of such an analysis is due to Leech & Healy (1959), who use a
fanction of the 0.P.r.0.’s providing a graduation of the initial measurement of a growth
curve (at time point zero) as & itant. This is justified by the fact that individuals
sre assigned at random to different treatments and therefore the initial differences have
expectation zero. For some comments on this analysis and a general approach in such cases
the reader is referred to a paper by the author (Rao, 1961).

Note addcd in proof. Since aubmxumg this paper, furthor results have been obtained on the selection
of and on of i allowing for variation in the concomitants. Theae will
be published in the Praceedings of tho Fifth Berkeley Syropoaium.

APPENDIX 1. ADJUSTMENT FOR CONCOMITANT VARIATION

Lot X be n x r roatrix of main variables and Z be n % ¢ matrix of concomitant variables, Lot

BX)= B §, EZ)=0 411
nxr  axm mxr axg
while E(X|Z) = BE+Zp. A 1-2)
Tho variables in cach row of X may bo dopendsnt whilo the sets of variablo in the rows of X are inde-
pondont. The problom is to esti i of § and tho diti dispersion metrix A

of tho variablea in & row, whioh is assumsd to be the samo for all the rowa,
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‘This is not a now problem smee for gwon Z tho exprosaion on tho right-hand side of (A 1-2) involves

only known i as of € and p. Thus wo havo tho Gauss-Markoff
\|

modol for tho multivariato case E(X) =Cr, (A19)

whereC = (BiZ) and v’ = (§'/p’). The lsast-aquarce cetimate of v is

={CCcyexX (A14)
and that of A is (n—r—q)"(X’X—X’C(C’C)"C’x]. (A )8)
We are i i in the simul of lipear p ic ions P'E. The eati of
P'E ia PE where £ is obtained from tho formula (A 1-4). The dmpemon matrix of P'§ is
(P'EP)A, (A 16)
where P'EP is a constant and E is the (s x m) submatrix obtained by omitting tho last g columna and the
loat ¢ rows of (C’C)-*. Sinco wo hovo an estil of A, tho i on tho ic P

follows on the standard linca when the row vectors in X given Z havo an r-variate normal distribution.
Alternativo expressions for tho estimates of £ and A, suitablo for desk calculators, are aa follows.

Dofinio £, = (BB BX, £, =(B'B)BZ @17
Then the equation for p alone can be written
(ZZ-2Z'BEy)p = ZX-E,BX. (A18)
Lot § bo a solution of (A 1-8). Then the solution for E can bo written
§=6,-§p. (A19)
The estimate of (n—m—gq) A is (X’X—%}B’X)-E'(Z’X—E;B’X). (A 110y
The dispersion matrix of P’ is cA whero
¢ = P(B'B) P+ PR, 22— §,BZ)E,P. (A 11])
The set up in torras of the o.r.R. i in the ill i8 o spocial caso of the model

(A 1-1)}~(A 1-2) with X as the matrix of tho main 0.p.R. coefficients on n individuals and Z as the matrix
of the concomitant cocfficienta. The matrix B consista of a single colitmn of n unit clements and §
consists of a single row of (k+ 1) paramaters, viz. the expected values of the raain 0.p.r. coofficients.

The theory and analysis under the general sot up (Al - (Al 2} is useful in problems involving
comparison of growth curves under diff ete.

ApPENDIX 2. CoMMENT ON PoTTHOPF & ROY’3 APPROACH

Under the title, * A generalized multivariato analysis of variance model useful eapecially for growth
curve probloms’ Potthoff & Roy (1064) considored a linear model for tho observations which appeared
to be different from the Gauss-Markoff model and suggested its use in the cetimation of polynomial
growth curves. Tho model mentioned is

E(X,) = BEA, (A 21)
whero B and A aro known roatrices of orders n x mand px gand § ia Lhe wantrix of unknown parametars
and of ordor m x p. The different rowa of X, are distributed y while the g ok

in any row follow a g-varinto normal distributios with the same dlapennon matrix,

Construct & ¢ x ¢ non-singular matrix H = (H,:H,) such that AH, = 0 and the colurnns of H, form a
basis of tho vector space genoratod by tho rows of A. Such a matrix H is not necessarily unique, Let r
be the number of columna in H,. Multiplying both sides of (A 2-1) by H, we find

E(X.H,) = BEAH,, E(X,H,)=0. {A22)

‘The rank of AH, is ovidently r and honco EAH, can bo roplaced by a matrix y of independent parameters
snd of ordor m x r 80 that the eot up (A 2-1) is equivalent to

E(X)=Bn, EZ)=0 (A 23)
whore X = X, H, sad Z = X, H,. Thua the problem reducea to that of the model (A 1-1).
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When the rank of A is p, the matrix H, can also bo chosen as G—*A’ where G is any positive dofinite
matrix leading to tho equations
E[X,G-'AAG-'A")!) = BE, E(X,H,) =0, (A 2:4)

whoro H, is tho eame aa in (A 2-2). Tho model (A 2-4) i8 of the same form as (A 2°1),
Lat us supposo that the conditional oxpeotation of the main variables given the concomlumls X, H,

haa the Gauss-Markhoff model involving the original p E and the rog on
the concomitants as in (A 1-2). Then tho analysis of Appendix Al is applicable and tho inft onk
is tho eame whatever may be the transformations used such ae H in{A2-2)and G Hl in (A 2 -4).

In tho mothod proposcd by Potthoff & Roy the infc pplied by X, H,

is complotely ignored and further, some arbitrarinoss ia introduced in the chmce of G. They recommend
the choice of G based on a priori or some previous information. But such a proceduro is not justified
unless ita applicability to given data is established or tho information supplied by the concomitants is
shown to bo negligiblo (by an appropriato test) whon a particular choico of G is made.

Under tho goneral sot up such ag (A 2-1) for expectations and a goneral dispersion matrix for the row
variables, only two extremo types of discussions are possible. Ono ia to ignore the concomitants hoping
that a suitablo choice of G has been made as done by Potthoff & Roy. Another is to make adjustment
for all the concomitant variables and thus avoid all arbitririnoss, as done by Rao (19569). Any discussion
of other possibilitios leading to a aolecuon of concomitants would not be easy under the general set up
since the ion of tho in (A 2-2) or (A 2-4) is arbitrary. In the examplo of poly-
nomial growth ourves discuasod in the present pl\por, Lhore isa nnLurnl unm‘farmnuon leading to main
and concomitant variables in tha form of poly 1 rog nte for individual growth
curves. Insuch acase tho problem is Lo select a subset from tho concomitants for covariance adjustment.
This can be done as illustrated in tho prosent paper, although certain refinements may be neccssary to
allow for the fact that the number and the sot of tho concomitents chosen may vary from samplo to
eawple.
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