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ABSTRACT

It is known that heteroscedasticity in the context of the
well~known family of power transformations suggested by Box and
Cox creates complicatlons because it depends upon the hetsros—
cedasticity of the original values of the dependant variable
(4n & regression model set-up) as well as upon the transforma=
tion perameter. In this paper we attempt at generalizing the
original Box—Cox model in this direction, and suggest maximum
1ikelihood method of estimation for the parameters of the model.
Through illustrative examples we show the seriousness of the
problem of heteroscedasticity in the context of this trans—
formation, and indicate how éne can sepsrate out the problem
of non-linearity from the influence of stabilization of error

variance in an estimate of the transformation parametsr in our

generalized model.
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1. INTRODUCTION

In a well—known paper Box and Cox (1964) proposed a family
of power transformations given by y()\) = (y)‘ = 1/N if Nfo,
and lny if A =0, of the dependsent varisble (in a regre-
ssion model) so as to achieve (1) & linear relstionship among
the tranaformed dependent varisble end the set of fixed regras-
aors, and (11) homoscedasticity and (1ii) normality of the
transformed dependent varisble. Thie transformation, often
referred to as Box-Cox (BC) transformation, hes bean axtenaively
used} and currently there is a renewed intereat in the thaore—
tical problems relsting to this tranaformation Eas, for ins—
tance, Bickel and Doksum (1981), Box and Cax (1982), Spitzer
(1982a, 1932!:)]. In their paper Box and Cox also suggested
maximum likelihood (ML) method of sstimation for estimating the
parameters of the model. Subsequently, Draper and Cox (1969)
and Zarembka (1974) examined the extent to which all the thres
desirasble properties hold asimultanecusly. While Draper and Cox
found that Box—Cox precedure of estimastion is robust to non—
normality so long as the disturbances in the regression model
have reasonably symmetric distributions, Zarembka has shown
thet the method ia not robust with respect to hetsroscedasti-
city., More specifically, he has shoun that thers is a bias in
estimating A towards that transformation of the dependent
variable which leads to astabilization of the srror variance; A
and hence other parametsrs are consistently estimated only when
the transformation that leads to linearity alsc leads to heteros~
cedastic error variance. Zarambka has also outlinad a method of
estimation for N and other perametsrs of a (transformed) lineer
regreesion model under the assumption that V (yi) = OZE (yélhy
E (yi) >0 and h known, Regently Lahiri and Egy (1981) and £9y
(1882) reconsiderad the BC mcdel woder conditicn of heterasce=

2

dasticity given by V (yg.'\)) =g mi where mi'u are axogenously

given and O and & are unknown parametars,
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It may be pointed out that Zarsmbka'a modsl askumes h to
be known, Bnd that his estimation methad ylelds only cansistent
but not efficient estimatss of the parameters imvolved. For the
generalized BC model (by Lahiri and Egy) w,'s are exogenoualy
given, and the form of heteroscedasticity does not involve A.
tlearly, a straightforward assumption about V (y( ) without
taking into consideration the complications created by the trane—
formation does not seem to be quite satisfactory. Zarembks has,
in fact, noted this in ''... the problem is complicated by the
fact thet the heteroscedasticity in Ei (the disturbance term)
gapends UpON the heteroscedaaticity in y1 as waell as upon the
unknown parameter AT (1974, pe 173).

in the light of the above obsstvation a closer examination
as to how the transformation affects the nature of hetsroscedas—
ticity of yih)‘s becomas gquite important. Since in cross—
sectional studies heteroscedasticity in the errors is often dus
to either heteroscedastic disturbances or estimation of incorrect
Functional form or both, the generalization of BC model incorpo~
rating proper heteroscedastic structure with varying degrees of
heteroscadasticity is callsd for so that simultaneous testing
for heteroscedasticity and functional form is possible. An
attampt towards this direction is being made in this paper.

The problem of heteroscedasticity in the context of the family
of powar transformations used by Box and Cox is discussed in the
next saction. The estimation method ia described in section 3.
Illystrative examples are given 1n section 4 to show that the
use of standard 8C model can produce misleading conclusions.

This is followed by conclusions im section S.

2. BOX-COX TRANSFORMATION AND THE PROBLEM
= OF HETEROSCEDASTICITY

The ysual Box-Cox (BC) model is

y(}‘) axp+ & e (1)
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where Yy is a (n x 1) vector of observations on the
dependent variable with i—th element being yix) = (yt - DA
1f A F£0, 8nd lny if A =0; X dsa (nx k) matrix with
rapk k of observations on k regressorsfy B is the (k x 1)
vector of associated regression coefficients sand € ig 5
(nx 1) vector of disturbances. The elements of the first
column of X are assumed to be all unity Ef. Schlesselman
(1971)_7. Box and Cox assumed that Ei'e are 1ndep;ndantly
normally distributed with mean zero and variance O across
observations. It may be stated here that all the dependent
variables in X can as well be powar transformed with the same
value of A or with different values of A for different
variables. This generalization would not, howsver, give rise
to any additional problem than those arising in the specifi-
cation in (1), nor would it change any of the essential con-
clusions.

Let us now look at the problem of hetaroacadastichy moTe
carefully. Using the well-known approximation

aely,)
vln(y)) exvly,) BN A

for any function g(yi) of y;, we have from the definition
of y

))2)\-‘2

V(yY‘)) =V{y;) (Ely, v 1=1,2, 0 .l (2)

whers V(.)} denotes the variance of the relevant variabla. It
follows from (2) that the value of A that linearizes need not
necessarily lead to homoscedasticity of yi}\ ‘s even when the
original observations are homoscedastic. The possible hetaroa—
cedesticity in &, is, therafore, expressad through V(yi).
[(yi) and N. UYe now make a spsecific assumption about the form

of V(Yi) viz.,
Wy, =o? (Ely D" Ely) > 8, 121, 2, ey n 203
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where h is unknown. This is quite a general form of heteros—
cedasticity, and is in line with those of Box and Hill (1974) who

considered |E(yi)| rether than E(yi). In the context of mul-
tiple regression equations and random coefficient models such an
assumption about the form of heteroscedasticity is quite appro-
priate. We thus have using (3) and esauming @ to be smell i.e.,
¢-> 0 [cf. Bickel and Doksum (1981), Draper and Cox (1969) and
Zarembke (197417 from (2)

( (¢9) ))2)\-2+h .o ()

o),

)r"o' (e(y

By using Taylor expansion around E(y and thereby approxi-—

A
mating E(yi) in terms of E(yi )y V(ygk ) in (8) essily

v(y()‘)) =0 E«(x x -e):r v u(5)

where H(A, Xy B) ~ (1L + N x5 ‘B)l/k for N £ 0O, and sxp(x 8)
for A =03 =(2x -2 + h), x ‘B E(yék)) and xi' is the
i-th row of X. The final form tt U(y{)  therefore hecanes

()‘) (,2[1”\ xi'%é, NED

” vZEmu;m°, N=o0

reduces to

...(6)

where O 18 assumed to be in a compact set and is equal to
(A=2+h)/A for N£O and (h=2) for N\ =0, The quan~
tity within the third bracket is assumed to be positive and
bounded away from zerc. Thus, given that yi's are heteros—
cedastic of the type considered, yik)'s will have constant
variance across observations only when h =2 = 2\ which, of
course, 1s a very specisl case, although this might hold foar
more than ope copbination of values of A and h. It may be
noted here that the pasrameters of interst in our model, as
olven by (1) and (6), ere, apart fram B and 0P2, N and 6.
Ve pan, therefore, concluda from (6) that, in general, the
Power transformed dependent varisble will have different variances

8croes obeervations irrespective of whether originel observatiaons
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i.m., yi" were homoscecastic or not, ano that thes structure
of varisnce will, in agdition, to the parameters involveo in tne

assumad fore of hatsroacedasticity for yx's. also involva A,

3. ESTIMATION

In this section wa briefly outline the sst{mstion proceaurs
for B8C wodel with heteroscedastic disturbances, henceforth to
be referrsd to as Box—Cox hetercscedaatic {BCH) mocel, given by
(1) and (). while one can assume other forms of heteroscedas=
ticity for v(yi) 80 that v(yiA)) would change, the sstimation
procedure, in principle, remains the sase. Alsp, 8 power trans-
formation, as originally pointed out by Poirier (1978}, does not
in genaral permit larges negativae values snd hence, we 3ssume, lika
others fe.q., Egy (1982), Lahiri ang £gy (1961), and Spitzer
(1978, 1982a, 1982b) to cite a h:7, that the probability for
large negative values of the disturbance tarm is seall so that
the assumption of normality is not sariously affectsad.

Thus, under the assumption of normality of Ci's, the

log=likelihood function for BCH model becomes

2
L{n, 8,00°, 6ly, X) = const. —% l.no‘2 - -;- 1n sl

- —2(13 (y()\) -xg) o7t (y()‘) = XB) ¢+ In (3 ... (7}

where © 1s 8 (n x n) diagonal matrix whoss f{-th diagonsl

eloment Qu is mqual to (1 O)\x"B)é for A 4 0 and

-xp(xi'B) for A =0, and 13l {is the Jacobian of transfor—
mation.

Maxiaisation of (7) with respect to all the parameters ia
svidently very cosplicated bacsuse of the non=linearities invol=~
ved in the log-likelihood function. While maximum likelihocod
(ML) estimates can be obtsinad by using any of the standard
techniques for maximizing non—linear equations {sea, Judge st al.

(1980, Ch. 17) for detail discussion an thasae mathods), one can
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as well use search technigues. For a given value of (A, 6)

pair, one first uses ordinary least squares (OLS) methad to gat

an estimate of B, which together with the given valus of

(N, 6) is used to obtain an estimate of Q. say 6()\, 8)s which

in turn is used to obtain generalised least squares (GLS) esti-
mates of B and 0'2, say ,B\()\, 6) and 3’2()\, &), The con—

centrated log~likelihood function therefore becomes
A2
L(A, 6ly, X) = const. = -2'1 Ing*“(N, &) - % ln\ﬁ()\, &)1 +

(A -1) Zin Y ... (8)

Further iterations with these new estimates are done till

L(\, &1y, X) in (B) attains maximum for the fixad N, &)
value. The ML estimators of A and & and hence of B ang

0_2 are then obtained by searching for values of (A, §) over

a reasonable range until the maximum value of the log-likelihood
function is attained, The essential logic in concluding that
this procedure of estimation would result in ML estimates are
derived from Dhrymes (1970, Ch. 3), Judge et al. (1980, ch . 4),
Maddala (1971, Ch. 12), Oberhofer and Kmenta (1976) and Spitzer

(1982a).
Since the search procedure stated above is two—dimensional

and hence the number of required regressions too large, we sug—
gest a procedure [c-:f'. Coandoo and Sarkar (1979_17 where a syste-
matic search over N only is needed. Suppose for a éivan A
(vithout loss of genmerality A # 0), ﬁ()\) = (X'X)_lx'y(}‘) is
0LS estimator of B for the given A. Now

oL (. n —~
3 s e e S I cee(9)
9 I8 =B\ 20" 20" a1
aL(, 1 N —~ 1 P2 —~, -~
A == Il (N) + =5 £ &(A) p.(N) "1,
a6 ’B By T T i bt 1A

ves(10)

;l\here ai()\/)\ = yi)\) - xilé\()\),'a;()\) = [1 + )\{}i()\)J and
ui()\) = xi'B()\). Now setting (9) and (10) to zere and then subg=—
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tituting the solution of 02 thus obtained from (9) in (10), we
have

T R T~
Lzlei()\) ui()\) 1n ul()\) =0 (1)

whera %’;(X) ='u‘i'(>~)/£7rr| ’q(k)} VP 4 that In ) = 0.
=1 =t
Deroting the left hand side of (11) by S(6(\)), we can
obviously check that lim S(6(N)) = - @, lim S(6(\)) = o
5> 5->=m
and ﬁ%%ll <0 for=m <6< m. Hence 5(6(A)) =0 nas
a unique root for & for a given N, and this root can there-
fore be obtained by using the standard Nawton—Raphson itsrative
procedure. The estimate of 6, say 3(A), thus obtained can
now be used to calculate the log-likelihood function in (7).
Improved estimates of B and @? and hence of 6 and L(.)
can then ba obtained at each succeseive stags of iteration till
the maximum value of L(.) for the given A is obtained. The
unconditional ML estimates of all the parameters can be obtained
by seerching over reasonable range of A till the maximum valus

of the log—likelihood function is attainad.

Under standard conditions [;Ea, Carroll et al. (19682),
Magnus (1978), Theil (1971) etc. for the relevant cnnditiong7.
both the methods would asymptotically yield ML astimates. In
the numerical examples that follow we have found that the eecond
method required much lese computer processing time than the
first one. Ae has been pointed out by Sevin and White (1978) in
the context of Box—Cox model with autocorrelated errors that it
does not sppear to he feasible to analytically derive the
variance—covariance matrix of the limiting distribution of the
ML estimates of the paramsters. An approximation, however, to
the estimated information matrix cen be obtained numarically
from the metrix of second derivatives. Incidentally, it is to
be noted that the correct ML covarlasnce estimates are not directly

provided by these search procedures, Some additional computa=
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tional work, though very insignificant compared to those needed
for perameter estimates, 1s needed for this [sese, Spitzer (1982a)
for detail_s].

While different conditional and unconditional hypothases
involving the principal perameters N and & may be considered
for testing, the hypothesis that would be of main interest to us
is whether or not & = 0. These tests are considered in the

next section.

4, ILLUSTRATIVE EXAMPLES

In this section we report the results obtained by consi-

dering BCH model for twe different sets of data. The first one
is taken from 0'Hara and McClelland (1964) and relates to radio—
sales (y) and incomes (x), for 49 states in the United Statas
for the year 1954, This was first analysed by Rutemiller and
Bouers (1968) in terms of a linear regression model with hatero~
scedastic errors. The second example is based on the data
available from Feigl and Zelen (1965) on survival time (y) of
17 lsukemia patients and their white blood cell count (x).
They used this data to estimate the linear reqression of y on
In x with exponential errors. This data was also used by
Amemiya (1973) and Cox and Snell (1968) for their studies.

We have used the above two examples to estimate the

following regression egquations
YY\) = Bl + Bzxi * ei (L=1,2y ...y 49), "'(12)

for the first sxemple and

,Y‘) =B + ezxY‘) +e (1=1,2,..,17), ...(13)

for the sacond example. While different assumptions can be medse

about V(y,), we assume, ss stated in section 2, that
()
L)
2 -
for NEO end o BXP(Xl'B) for A =0 /[cf.

U(yi) =¢r2(E(y1))hg E(yi) > 0, h unknown, sa that v(y
=1+ )
squation (6_)].
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JABLE 1
Maximum log—likelihood valuss L(.) for
different veluss of A and
e Radio—sales data Leukemia data
Model 5 (. ~ 3 X
LHOM 1 o* ~159,524 1#* D% =64,526
LHET 1 1.501  =131.989 1 0.582 -64.188
0,923% 1.326 -129.686  0.124% ¢ —56.209
BCH  (0.623) (1.325) (-129.732) (0.124) ¢  (=56.209)
BC 0,786 o -146.375 0.282 oF =57,.340
5(0)- - o*
LHOR o o 187. 682 o* =59, 642
5(D)- -184.3 -1.500 -~56.3
LHET o 0.613 184.316 o* 6.367
a LHOM | Linear Homoscedastic, LHET : Linear Heterusce—

dastic, S(D)LHOM : Semilog/Doublelog Homoscedastic and
S(D)LHET : Semilog/Doublelag Hateroscedastic.

Although both the methods of estimation have yielced
ldentical ML estimates, we have, for the sske of illustra—
tion, given the results obtained by the second methad in
brackets for BCH model only.

Since the estimate of & for the Laukemia data lies In a
rance where L(.) 1is somewhat insensitive to changes in 6,
we have kept the corresponding entry ip the table blank.

Indicates that the valus of the parameter in gquestion is
given a priori from the model assumed.

In Table 1, we present the maximum values of the log—

1ikelihood function for each of the different assumad values of
one or both of A and 6. Mors epecifically, in addition to
the maximum log~likelihood veluas for BCH and Box—Cox (BC)

models, we 8180 report the meximum log-likelihood values for
’

A=1

and 0 andfoxr & = 0. For each of the two examples wa

have used both the methods stated in section 3 for obtaining ML

pstimetes i.e., (1) search over N eand & only and (ii) search

over AN only. These two methods produce almost identical re~
sults (though the sscond one took much less computation time)

snd hence, for conveniencs, ws have reported the ressults for ths
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TABLE 11
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Results of likelihood ratio test for different null hypotheses

Ratio—sales data

Leukemia data

_ Value of Value of
Statis= H, Y tRotest  LorolT (R-test Conclum
tie statistic 2" statistic ~-o0¢
1(1) A=1, i=0 )_\(0)\, 6=0 26,298 reject H_ 14,372 rejact H_
1(2) AN=1, 5(1) ‘)\\, <] 4,606 reject B 15,956 reject H
o
R at 5°/. a
1(3) A=1, 6=0 /)\\=l/( 5(1) 55,070 reject H,  0.676 accept H_
1(4) A(0), 6=D ’)\\, /C: 33,378 reject Hg 2.260 accept H_
1(5) A=l, 6=0 A, & 59.676 reject Ho 16.632 rejact Ho
1(6) A=0, 6=0 A=0, S(U) 6.732 reject H° 6.550 reject H
A A at 5¢/. °
1(7) A=0, &= N, & 116.244 reject H‘_J 6.864 rejac; H
A - ) at 5+/.
1(8) A=0, 5(0), Ay O 109,260 reject Ho 0.314 accept H_
A
1(9) A=0, 6=0 A(D), 6=0  B2.866 reject H ~ 4.604 rajac; Ho
at 5°/.

# Unless mentioned, 'reject/accept H,' means that the null hypothesis

Ho is rejected/accapted in favour of/against the alternative hypo=

thesis H) at both 5¢/. and 1'/. levals of significance.

first method only.

for different hypotheses involving A
Table 1T.

and ©

Results of the likelihood-ratio (LR) test

are given in

for the first example the ML method of estimation of BCH

A A
model haa ylelded estimetes of N and Ses AN = 0,923 end 6 = 1.326

and the maximum log—likslihoaod value is =-129.686.

The corras—

ponding value for BC model is only =146.375., Thus, there is &

considerable increase in the maximum velue of the log-likeli-

hood function in BCH model gompared to that in 8C model.

Using

A
LR test we find from 1(4) in TableII that Ryt A0), 6 = 0,
A
where A(0) denotes the ML estimats of N when & =0, is
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rejscted in favour of Hl 1A, 1,8., BC modal is clearly
rejected in favour of BCH mocel. This, therefore, indicates
that one would have chosen a wrong model by straightforwaraly
using Box—Cox procedure. If we now consider tha test statistic
1{2), we rejact linear heteroscedastic wodel in favour of 8CH
msodel at 5 per cent lavel of significance, the critical valua

2
of X
the degree of hetaroscedasticity may be affected by a wrong

being 3.84. This teat shows that the parameter inoiceting

choice of functlonal form. It is important to nota that the
advantage of using BCH model is that by rejecting the {naporo-
priate null hypotheses against the unrestricted hypothesis, it
helps us in choosing the proper model. This {a shown by 1(5),
1(7) anc 1(B). It may also be saan from 1(6), for example,
how conditional hypotheses (where values of a parsmeter ara
EE'—iﬂ assumed to be known) may lessd to wrong conclusion
about the proper model. In this cesa A is 3 priori fixed
at A 0 andus find that H_: Ae=0,5 =0 ia rejected in
favour of H, 3 A = 0, 6(0) at 5 per cent level of significance ang
"o is almost accepted asgainst M1 st 1 per cent level of significante
though the maximum values of the log—likelihood function are much less
for both the hypotheses as compered to the maximum value for the 8CH
model. Thus we find that choics of functional form appears tc be
crucial in discriminating among different models and also, s8s in this
example, that esstimation af N seams to ba influenced by hetercsce”
dasticity.

In tha sscond example of survivel time of leukemia pestients ouf
M. method estimation gives A = 0.124 for the 8CH model. It was
found here that the estimate of [1 + N xL'B] ~1 for all i
and hence Vi'l were insensitive to 6. In such ceses of emall
xaluu of A, we suggest that ons should test for Ho $A=D0,
5(0) against Hy s A, 6 and if the null hypothesis is accepted,
ane should proceed {for further studiss) with the model where
N = 0 and for this case thers is a separate expression for

approximating E(yi) given in section 2. We find from Tablel
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that the maximum log~likelihcood values for the case (A = 0,
é\: (0)) and HCH model (i.s., ’?:. 6) are close being =56.367
and =56.210 respectively and 6 has a unique estimate at
g: ~-1.500 in the former case. The fact that & and hence /;\
(cf. squation (S)) have negative values indicates that the
variance of Yy 's decrease with increase in E(yi).a' We
nowsver, note that for A =0 and & =-1.5, estimate of h
comes out to be 0.5 which means that the original observations
of the dependent variable i.e., yi‘s have increasing variance
with increase in E(yi) values, This clearly shows the extent
to which transformation may affect the variance of the trans-
formed observations compared to that of the original obssrva-
tions. This negative valus of g also implies that heteros-
cedasticity 1s relatively less important for this data. This
is also corroborated by 1(4). How conditional hypotheses may
lead to acceptance of wrong models are revealed here also by
1(3), for example, where linear homoscedastic model is accepted
against linear heteroscedastic model though both have much less
maximum log—likelihood values as compared to BCH model and both
are, as indicated by 1(5) and 1(2), rejected in favour of BCH
model.

Thus we find that in a practical situation the departure
in the estimate of A from a model with heteroscedasticity
to that of a model with homoscedasticity and hence the con—
sequences of choosing an inappropriate model may depend upon the

data. But since the actual situation cennot be known & priori,

it is, in general, advisable to estimate N within the frame-—

work of BCH modsl.
5. CONCLUSIONS

Box and Cox (1964) suggested a transformation of the
dependent variable in a regression model in order to achisve
linearity, homoscedasticity end normality of the transformed
dependent verisble and proposed maximum likelihood method of

estimation of the parameters of such a model. Zarambka (1974)
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however showed that ML method of estimation suggested by Box
and Cox is not robust to hetaroscadasticity and that the esti~
mata of N will be biased towards the direction of stablizing
the error variancs.

In this peper we have asserted that the transformation
that lesda to linearity does not necossarily lead to homoece-
desticity elso. This is evident from the transformation itself,
We have arqued that since hetercacadasticity in transformsd
dependent variasble is due to both tranaformation and heteros-
cedeaticity in the original values of the depsndent varisble,
one should sstimate A in the framework of heteroscedesticity as
given by the transformetion end the heteroscedasticity in the
original dependent variable. We hava advocated ML method of
gstimation of such a model and heve also suggested search
procedures for obteining ML estimates of the persmeters. Us
have slso indicated the seriousness of the problem of hsteros-
cedasticity in the context of the usual Box—Cox model. We have,
through illuetrative exsmples, shown how ths problem can be cir
cumvented and distinct improvement be brought about by consi-
dering Box—Cox heteroscedastic model where the form of heteros—
cedasticity should properly incorporate the complications crea—

ted by the power transformation.
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