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ABSTRACT

In this paper we study the problem of identifying a popula-
tion with one of the two populations, with an aim to control both
types of errors. We assume that the populations are normal with
unknown means, but with unit variance. We have cited examples
from anthropological studies where our formulation of the
problem fits in quite nicely. We observe that SPRT's based
on the maximal invariant may not terminate with probability one.
Simulation studies reported here show a substantial saving in the
average number of samples compared to the best invariant fixed

sample test.

1. INTRODUCTION
Suppose there are three unknown populations “0' Hl and ﬂz,

where it is known that I'lo i8 either ﬂl or II2. Based on infor-

mation obtained from samples on these populations, we wish to
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identify Ho with Hl or n2 by controlling both types of errors
committed in the decision-making.

Let X, Y and Z with suffixes be the random variables associ-
ated with Ho, Hl and H2 respective;y, where each is normally
distributed with common variance ¢° and (unknown) means y, u,
and u2 respectively. We assume that X, Y and Z are mutually
independent, and independent observations are available from
these populations. Now, we want to decide whether u = u, or
= u2, having both errors at preassigned levels. Towards this,

we assume 02 = 1 and

B 2u, + 8 )

where § is a known positive constant, that is, the two popula-
tions Hl and “2 are separated by § units. One is referred to
section 2.4 for some discussions regarding our assumptions.
Since any reasonable procedure of identification in the case Ul
Hy + § 1s expected to perform in a still better way for My >y
+ 8, we confine our attention to procedures for identifying “0
with Hl or H2 for the configuration upo=u, + §, which is re-
ferred to as the least favorable configuration (LFC).

Since we wish to control both the errors with savings in the
sample sizes, we take resort to sequential sampling. We shall
consider mainly the case where a sample of fixed size is given
from Ho and no further sampling from it is feagible although

2
restriction leads to some novel theoretical points, e.g. Hall,
Wijsman and Ghosh (1965) SPRT's based on the maximal invariant
do not terminate with probability one. Moreover, it has some

unlimited sequential sampling is permitted from Hl' I,. Sucha

practical interest where the sample from Ho refers to, say,
anthropological specimens at a site where excavation has stopped
and Hl, Hz refer to sites where excavation is currently going on.
For another application, one may wish to identify the Todas (Ho)
as originating from the Nairs of Malabar (Hl) or Nairs of Nam-
butiris (ﬂz). One may refer to Rivers (1906, p. 708). Since the
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total number of living Todas (Ho) is very small (about seventy
families) whereas the other two communities considered are fairly
large, we have a situation that is close to our present formula-
tion of the problem. 1In this second example, the variables X, Y
or Z may be any one of the variables listed on p. 708 of Rivers
(1906), e.g. stature, nasal length or a suitable linear combina-
tion thereof. (We may use an estimate of o from the Toda data
for the true value.)

We will assume that both “1 and ﬂ2 will be sampled at each
stage until we stop sampling. Of course it would be more effi-
cient to sample one popularion at each stage; since the vari-
ances are equal it seems nafural that each of Hl and H2 should
be sampled as nearly equally as possible. For example, we may
start by sampling Hl and then, until we stop, we sample n2 and
ﬂl alternately. A modification of this sort can be easily in-
corporated in our rules, but the consequent reduction in sample

size is less than one.

2. FORMULATION AND PROCEDURES

The problem of identification described in the case of LFC

reduces to testing between the following composite hypotheses:
Hie (b =w, u, =u-38),

Hy: (ul =u+6, u, = W .

We will use the notations and E, for probability and expecta-

P
] ]
tion respectively when 8 = (ul =M,y - u) obtainms. Let el =
(0, -8) and 92 = (8, 0). In the sequel, there will be two types

of errors, viz.

a = Pel(accept HZ)’ B = Paz(sccept Hl).

Our object is to propose statistical methods so as to keep these
errors o and B at desirable preassigned levels. Towards this end,

we present two procedures in this section called I and II. As
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stated earlier, k = # samples from "0 is given, and also we wish

to take a sample each from Jl, and H2 at every stage.

1
2.1 Fixed Sample Test

Suppcse we have random variables Xl. eey )(k from no,

Y.y -, ¥ from I, and 2 vvey 2 from NI,. Under the location
1 n 1 ' "n 2

I

shifts, i.e. xi - x‘ +c, Y‘1 +> Yj +c, Zj - Zj +¢ (L=1, ...,

ki =1, ..., n), -=<¢ <o the invariant sufficient statistic
= - = = '

is (Xk Yn' Xk - Zn) which follows from Stein's theorem as in

Hall et al (1965). Since we require Pe (reject Hl) = a, and Pe

(accept Hl) < B, the best fixed sample—éize invariant test is

to find a constant c(a, B), depending on a, B, such that:

Reject H, if &n W < c(a, 8)

1

where “n = ratio of the likelihoods of (Xk - Yn' Xk - Zn) under

H, and H, respectively. It is easy to see that

1 2

6k s
A rany 1l:l(zxk SR AR ERE
Let O(TQ) =1 - a where ¢ 1s the cdf of N(0,1) distribution.
Suppose, as usual, that a + 8 <1 (if a + B > 1, one need not
experiment at all) and thus Ty + TB > 0. 1In this case a fixed

sample size test with given requirements exists if and only if

1

1, 1.2
82 (t + T+ 30 m

Now, for a given 8§, equation (1) will have a solution in n if and
only if

8> (Tu + TB)R-E. (2)
1f (2) holds, the best choice of the sample size (ignoring its
fractional part) is M, = k[{GZkI(Tu + 18)2} - 1]_1/2. Let
M= (M], the smallest integer bigger than or equal to M.
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2.2 Procedure I
k

Conditional on ik =k 1121x1 we consider the auxiliary
problem of deciding between the two simple hypotheses:

* .
Hit (= X o oy, = X, - §)

WYy = ik + 6, u, - )_Lk)
with preassigned errors a and B. TIntuitively, if k is large we
hope that H: » H; will not deviate much from Hl’ H2 respectively.
At the same time, in case k 1s very small, the information about
ﬂo itself will be very poor and it seems pointless to get more
and more information about ﬂl, n2 and then try to see which one
of ﬂl or “2 looks more like no.

Let f(HI. n) denote the joint density of ¥, 2., § = o .oy
n conditional on Xk, under the hypothesls H; i=1, 2. We write
Enw = ln(f(Hl, n)/f(Hz, n)l=2§ E (2X - Y‘ -2 ) Like Wald's

(l9é7) SPRT, we choose two constants A, Bwith0 <A <] <B <=,
We now propose the following rule:

R,: At the nth stage,

1 n

decide ﬂo = “l if § & (2Xk - Yi - Zi) >b,

i=1
noo_
decide flg =N, if éizl(Zxk -y, - Zi) <a,
and continue sampling by taking one observation on both "l’ n2

if a <§ E (ZXk =Y, -2 ) <b where a = %A, b = &nB.
i=1
Now the problem is to find a and b for given a and B. Given

ik' we find the expression for L(ik). the probability of accept-—
ing Hl' by using Wald's fundamental identity. It is easy to see
that

L(Yk) = {1~ exp(toaé-l))(exp(tohd—l) - exp(!:ozaG-l)}_1 (3)

h - - 2X -6 - 2X
where ty ul + u, 2Xk which reduces to 2u - § ZXk under H

1
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and to 22U+ § - Zﬂk under Hz. Our error requirements suggest

that a and b be chosen so that

E )llL(ik)) =1-a and sez(L(ik)) =8 . )

So, one has to solve these two integral equations to obtain a and
b.

Here 1t may be noted that the usual justification of Wald's
(1947) approximations consists of two arguments. One involves
the use of Wald's inequalities to prove that the approximations
are likely to be conservative, but this cannot be used in the
present context. The other argument notes that if the mean and
variance of the summand are small, the excess over the boundaries
may be expected to be small (of course this is not always true).
This applies to the present set-up also, provided § is small
compared with min(~a, b). Our Monte Carlo results of table II
seem to be quite favorable.

Let Nl be the random sample size given by the rule Rl' If

n — —
Sn = 151 (2Xk - Yi - Zi)’ given Xk' Sn is the sum of n iid random
variables (with finite mean) and hence Pe(N1 < m|Xk) =1 and so

Pe(Nl < @) = 1 under H1 and H2. In fact, we have the following

stronger assertion.

Theorem 1. For the rule Rl' ES(Nl) < o for all fixed O.
Proof. If we proceed as in Stein (1946), we get
n=1

Poti; > n|X) < (p&X}
where

p(X) = miaf{l - g(X), 1 - kX)),

8(X) = Pl6(2X, - ¥, - 2)) > 206 - @)X},

h(x) = P8 - ¥, - 2)) < -2(b - a) X} .
Now o(ik) < 1 for all ii. and p(ik) is also continuous., Also,
p(xk) + 0 as ik + o, Hence, sup p(ik) < 1, which implies the

required result,
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However, since each new observation on I 11, supplies a

1" 2

rapidly diminishing amount of additional information, a trunca-
tion seems desirable. We check with R1 at every stage until we
reach n = 2M, M being defined in section 2.1. When n = 2M and

R1 still dictates to go on sampling, we decide that “0 = l'Il if

n
= nz if a<68L

n
I(X -vY, -
0<§ l( Xk Yi Zi) < b, and that “0 o

i=

= _ <o
(2X.k Yi Zi) 0 (However, we may truncate R, at any

1

stage and give a rule to decide between H, and H2 quite

analogously). '
Table II on page 60 of Wald (1947) suggests that in the iid
case the truncation point for the common values of @ and 8
should lie between 2M' and 3M', where M' is the sample size for
the best fixed sample-size test., In our context, because of
diminishing information, an earlier truncation at 2M seems to be

more reasonable.
2.3 Procedure 11

We consider the same location shift of transformations (as
discussed in section 2.]) and following the ideas of Hall et al
(1965) and Mallows (1953) we consider SPRT's based on the in-
variantly sufficient sequence of random variables Un =
(ik - ?n , ik - En), n =1, 2, .... where the distribution of U
is bivariate normal with mean vector (u - My W uz) and the

-1 -1
dispersfin matrix En = (Uij) where 9y 22 = k +n,
k . Notice that the pdf of Un is completely specified

=0

0 =
12
under Hl and HZ‘ From section 2.1 we recall that the log-like-

lihood ratio under H, and R

1 2 is given by

n

- Sk __ X - Y, -
R ran RGO z).

Now, we proceed as in Mallows (1953) and we propose the follow-

ing sequential test. Given two errors a and B, we choose con-
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stants a = #n{B/(l - a)) and b = &n{(l - B)/a), and stopping
rule is as follows:
R2: At the n‘:h stage,
decide that “0 = nl if Enwn > b,
decide that ﬂo = ﬂ2 if lnwn < a,
and continue the experiment by taking one more observation on
both l'll and ﬂ2 i1f a < lan< b. Let N, be the random sample
size for this rule. Then we have
Theorem 2. Pe(N2 = @) > 0 for all fixed 6.
A proof of Theorem 2 is provided in the appendix. Incidentally
this gives an example of the fact that SPRT's based on the maximal
invarlants need not terminate with probability one. In this
case, truncation of the rule R2 1s an absolute necessity.
We check with the rule Rz

n = 2M, M being defined in section 2.1. When n = 2M and R2 still

at every stage until we reach

needs more samples to stop, we decide “0 = ﬂl if 0 <

n
GkiEI(ZXk - Y1 - Zi) < b(2n + k), and HO = ﬂl 1f a(2n + k) <

n
Sk T (2X -Y, -2,) <o0.
Ty

2.4 Discussion and Comments

It is more reasonable to assume the separation is 80 and
regard 0 as unknown. In this case one can develop a truncated
SPRT based on the student's t-statistic

tn = (2)(k - Yn - Zn)/Sn

where
k n n
2 - 2 2 T 42
Sn = )lZ(Xi - Xk) + %(Yi - Yn) + ).1'.(2i Zn) .

This 18 similar to our procedure II. A test similar to our pro-
cedure I can also be developed. We did not consider this extenm-
gion partly to keep our Monte Carlo calculations simple and
partly because we felt the properties of the tests for unknown
0 are likely to be similar to those of the tests for known a.
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1f, on the other hand, we assumed a two-sided alternative
Iul - u2| > § in place of (A), the problem becomes much more
difficult. One can again invoke invariance and sufficiency ({(vide
Hall et al. (1965)) to develop a truncated SPRT for
= +
1* Mpmut 8)

HZ:(U =y, b= + §)

'
Hl.(u= u
t

but its performance for |u2 - u1| > 6 1s not clear. The diffi-
culty remains even in the fixed sample size case. But a number of
reasnnable procedures have been studied {vide Khatri and Srivastava
(1979), Chapter 8}. A different sequential formulation with sequen-
tial sampling from all the three populations is given {n Srivastava
(1973). For an elaborate review on theories and methods in classifi-

cation, one may refer to DasGupta (1973).

3. NUMERICAL STUDIES

In this section we study the truncated procedures I and II
as described in sections 2.2 and 2.3, and compare these with the

best fixed sample-size invariant test given in section 2.1.

3.1 Procedure I of Section 2

For simplicity we take a = 8, so that a= -band L(ik) =
{1+ exp(tobﬁ_l))_l. If we take M; = 2k, from section 2.1 it
follows that

1

5\2
5> (E) Ty = §g» s8Y. (5)
For computational purposes, we make a = 8 = .0I, k=1, 5, 20, 50,
100, 200, 6§ = 60, § + 0.5. The first value in table 1 (columm for

8) is 60. Now, (4) reduces to
a = E{1l + exp(b(l + 26-lii)))-l (6)
> [1 + E{exp(b(1 + zc‘lik)))]'l.

by Jensen's inequality, which implies that
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TABLE 1

Values of 6, b and the Integral in (6)

k $ b Integral
1 5.2018 8.5770 L0114
5.7018 7.4970 .0100
5 2.3263 8.5770 .0l14
2.8263 6.7001 .0092
20 1.1632 8.5770 .0l14
1.6632 5.9389 .0087
50 0.7356 8.5770 L0114
1.2356 5.2895 .0101
100 0.5202 8.5770 L0114
1.0202 5.2769 . 0085
200 0.3678 8.5770 L0114
0.8678 4.9785 .0096

b>ﬁ+{k2"+kazz(1-a}%_b
<% 16 2 "\« or Say-

So, for given a, &, k, one can take b0 as the first approximation
to b and use numerical integration techniques to solve (6) for b.
In table I, we present the b-values for different k, 8's.

For Monte Carlo experiments, we take no and Hl to be the
N(0, 1) populations, and H2 as N(-§, 1). Then we use our truncat-
ed decision rule RI (as described in section 2.2) 200 times for
each entry, and the results are presented in table 1I. In tables
II and III, Pel(CI) stands for the estimated probability of
correctly identifying Ho with Hl'

From column 3 of tables II and 1II, we note that Pel(TrunCS'
tion) ie quite small, and so we do not record the Pel(CI) for the
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TABLE 11

Small and Moderate Sample Behavior of Procedure 1

Truncated Cases Untruncated Cases

k § No. of Truncat ion Relat fve

truncations point (requenrcy

Py (CT)

1

1 5.2018 2 4.00 .9848
5.7018 6 1.99 L9942
5 2.3263 - 20.00 1.0000
2.8263 - 5.92 L9950

20 1.1632 - 80.00 1.0000
1.6%32 1 12.806 1.0032

50 0.7356 - 200.00 . 9900
1.2356 1 19.79 .9699

100 0.5202 - 400,00 .9950
1.0202 1 25,26 1.0000

200 0.35678 - 800,00 L9900
0.8578 1 33.57 .9950

truncated case. Also one may note that the sample size for the
best fixed sample-size invariant test is about half of the trum-

cation point —- and this remark applies to both the tables II and
II1.

3.2 Procedure II of section 2

As in (3.1), in this case, §_  is given by

0
1
- 2
60 Z(TG+TB)(5/R) .

We consider a = ,05, 8 = ,0}; & = 60. 60 + 0.5, and the same
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TABLE TII

Small and Moderate Sample Behavior of Procedure II

Truncated Cases Untruncated Cages
k [ No. of Truncat ion Relative
truncations point frequency
Pe (CI)
1
1 4.4399 15 4.00 1.0000
4.9399 23 1.83 1. 0000
5 1.9856 12 20.00 1.0000
2.4856 8 5.21 .9948
20 0.9928 10 80.00 . 9895
1.4928 3 10.95 .9797
50 0.6279 9 200.00 .9948
1.1279 3 16.48 .9898
100 0.4434 8 400.00 .9899
0.9434 1 21,50 . 9949
200 0.3139 8 800.00 . 9844
0.8139 1 27,02 . 9899

k-values as in section 3.1. We have a = -4,5539, b = 2.9857

to be used in the rule Rz. For Monte-Carlo experiments, we

proceed as in section 3.1, and present our findings in table TII.
It can be seen from tables IT and III that if the truncation

point is 2M, the attained «,B can be substantially lower than the

desired values. We have not reported here the values of ASN,

however our Monte Carlo studies also revealed that the average

sample sizes of our tests are between one-fourth and one-half

of the sample sizesof the corresponding UMP Invariant fixed

sample size tests.
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APPENDIX
Proof of Theorem 2
Let 2n "n be as defined iIn section 2.1. First note that a.s.

Sk § =
lim &n Hn T{Z&— u - u2}
e

Hence Sup 4n W < ®» a.s. and inf n W < = a.s. This immedi-
n n n n

ately implies we can choose a < b such that
P.la < inf 2n W_, Sup &n W <b}>0. 7
(] Y n n n
To show that (7) holds for all a < 0 < b requires a bit more
calculation carried out in the next paragraph.

For given a < 0 < b choose ¢ such that 0 < £ < (b - a)/k§ .
Let-AE be the event

2a/k + §(u; +, +e) < 25?&‘ 2b/k + §(u) +p, - €)

Let B, be the event

m

=‘<I

+zn—~ul—p2|<_eforalln31.

We shall show below
8
Pe(BE) >0 . (8)
Then 176(N2 = @) > PB(AEQ Bs) = Pe(Ae) PB(BE) > 0.

It remains to prove (8). Let
n

S =§(Ym+i+z

m,n mhl T H1 T M) -

By the strong law of large numbers given € > O, nn > 0, there
exists ng such that

Pe’s_n:\ﬂl(%' nzagl 21 -m
for all m which implies
S
%o |menl <7+ n2mgl21-n.




SEQUENTIAL PROCEDURES IN IDENTIFICATION

Choose now m so large that

S
Pelﬁ‘% <%, li“<"o >l-n.

Then 1if n is sufficiently small and m sufficiently large

S

For any fixed m,

>0 .

SOn £
P81|—;—| < E’, n=1, ..., m

Combining (9) and (10) and noting (i) that the events in (9)

(10) are independent and (1i) that for n > m

lSO,n‘ <h |So,m| + lSO,n—m|
n —n m n '

we get (8).

1639

(9

(10

and
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