251

The Canadion Journal of Sutistics
Vol. 14, No. 3. 1986, Pages 251-25§
La Revue Canadienne de Statistigue

A note on the residual median process

J.K. GHOSH and C.K. MUSTAFI

Indian Statistical Institute, Calcutta
and Indian Institute of Management, Calcutia

Key words and phrases: Residual median, Brownian bridge, Kiefer process. law of
iterated logarithm.
AMS 1980 subject classifications: Primary 60F10; secondary 62E20.

ABSTRACT

We study the residual median process. defined as the median of those observations which are
greater than a number . Using appropriaic limit thcorems, it is shown that the stochastic process
converges in law to a Gaussian process defined in terms of a Brownian bridge.

RESUME

Nous étudions le processus stochastique de la c'est-a-dire la médiane des
observations dont Ja valeur est supéricure 3 un nombre 1. Nous démontrons que ce processus
stochastique converge en loi vers un processus gaussien défini au moyen d’un pont brownien.

1. INTRODUCTION

Consider a distribution function F(*) (r > 0) which is twice differentiable with a
density f(*). Let

Gn=1-FQu )]

be the probability of surviving after time 1. The residual median m, after time ¢ is the
solution of the equation

G(m,)

|
G 2 @

The use of the residual median has some advantages over the residual mean in problems
of reliability and biometry. It is not possible to compute the sample mean residual lifetime
until the failure of all the units has been observed. With a “fat-tailed” distribution the
estimated mean residual time is likely to be ble due to its dependence on a few high
observations. From a theoretical point of view there are situations where the mean residual
life may not exist {(Johnson and Kotz 1970, p. 234). The form of the residual median has
also been used to characterise the form of F(+) (Amold and Brockett 1983).

Consider n independent observations with distribution function F(+). Let

no. of observations ¢
n

G.(n) = 3
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The sample residual median after time ¢ is
G.y:) | }

G0 = E' >
Note that y, is well defined for @ < 1 < b if G,(b) > 0, which is true for sufficiently
large . as.

In this note we shall study the asymptotic behaviour of the process W(y, - m,) for
t between any two fixed values 0 < ¢ < b < =. It will be shown that the process
Val ¥, — m,), a <t <b, converges in law to a Gaussian process which can be defined
in terms of a Brownian bridge process. It will be assumed that condition (C) below is
satisified for F(-):

(C) F(-) has a continuously differentiable density f(+) which is bounded away from
2zero and infinity on bounded sets.

¥ = inf { yei 4)

It may be indicated here that a similar stochastic process for residual mean was studied
by Yang (1978), who showed that the process converges in law 0 a Gaussian process.

2. THE LIMIT THEOREMS

As stated in the introduction, we assume throughout that F has a continuously
differentiable density. This implies (1) that the inverse function G™'(r) also has a con-
tinuously differentiable derivative, bounded away from zero and infinity on bounded sets,
and (2) m, is unique, continuous, and strictly increasing.

We begin by observing an elementary but important fact, namely, that

Gy = G(y) = HG.(n) = G(} = {G(y) — G(m,)} + R,(1), )

where R, (1) = O(n”") uniformly in 1. The relation (5) follows from the definition of m,
and y,. Observe that 2G(m,) = G(1). Also, if nG,(1) = 2k. then y, is the kth order statistic
among the 2k observations which are greater than or equal to t, and

|
Galy) =1G.(n) + n
if nG,(1) = 2k + 1, then y, is the (k + 1)th order statistic and
1
Guly) =1G1) + 5

Of course we have tacitly assumed that the observations are distinct, which is true with
probability one, since F is continuous.
We rewrite (5) as

Gly) = G(m) = }{GJ(1) - G(} = {G.(y) = Gy} + O™y (®)
and estimate y, — m, in our first lemma.
LEMMA 1.
Sup, ly, — m| = O(n}(log logn))  a.s. m

Proof. By the law of the iterated logarithm for empirical distribution functions (Sen 1981,
p- 39),

0 16,(0) - G()| = O tloglogn)t,  as
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So the RHS of (6) is almost surely O(n'g(log log ) uniformly in 1. The same is therefore
true of the LHS of (6), namely G(y,) = G(m,). But

yo=m=G(G(y) - G (Gm)),

and G™' has a bounded derivative in an open interval containing all m, (@ < t < b)
by the observation made at the beginning of this section. The lemma follows
immediately. Q.E.D.

LEMMA 2. Assume condition (C). Then there exists a probability space with a Kiefer
process {K(x,5), 0 S x = 1,5 2 0} on it so that

1K(F(1).n) = K(F(m,).n)
sup |nHG(y) = Glm)) = ——————— N
'EYEY] n
= 0(n'*(l0g log n){(log mh  as. (8

Proof. Let Fo(1) = 1 — G,(1) be the empirical distribution function of a random sample
of size n on F. Then by (6) we have

2{G(y) = Gim)} = $n{F(1) = Fue) = nH{F(p) - Fly)} + O(a™)). (9)

Hence by Komlés, Major, and Tusnddy (1975) (cf. Theorem 4.4.3 in Csorgé and Révész
1981), the left-hand side of the equality in (8) is almost surely bounded above by

K(F(y,).n) = K(F(m,),n)
O(n - login) + sup l y.m - (m. 1 |~ (10
nSIS n
Next, with €, = SUp, <, sm|F(y:) = F(m,)|, we have
sup, [K(F(y,).m) = K(F(m,), n)|
< sup sup |K(F(m)+s,n)—K(F(m,).n)|
< sup sup |K(F(m,) + 5,7) = K(F(m,),n)|

'EIEN A 1
S350 Moglogm Hy

almosl surely, for all but a finite number of n, by (7). Consequently, by taking h, =
o(n™? (Iog log n) ) in Theorem 1.15.2 in Cstrgd and Révész (1981). we obtain that

. IK(F(y,).n) — K(F(m,).n)|

as1%h at

= Ot tlloglogmitlogmh)  as. (1N

The latter combined with {10) yields (8). Q.E.D.

THEOREM. Assume condition (C). Then on the probability of space of Lemma 2 and with
its Kiefer process K(+»+) we have

K(F(m,)),n) = ¥K(F(1). n)

fim)n}
= 0(n'*(log log n)‘(log n)*) as. (12)

sup n*(y, -m) -
asish

Proof. By a two-term Taylor expansion of the LHS of (6) and applying (7) and condition
(C), we obtain
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sup [nHG(y) = Gim} = nk(y, = m){=F(m)H
asisy = 0(ntloglogn) as. (13)

Hence by (8) and (13) we get (12).

COROLLARY 1. Assume condition (C). Then on the probability space of Lemma 2 there
exists a sequence of Brownian bridges

{B.xxo=x= 1}

such that

sup
esisd

|
aky, ~ m) - (m{B.(F(m,)) -4 B.(F(:))})l =o,(.  (14)

Proof. Since for each n = 1
D
(ntkxonyio=x< 1} = (Bax)osx<1),
by (12) we get (14). Q.E.D.

By (14) we of course have also shown that the D[a, b]-valued random process
iy, - mya=i=b) converges in distribution in Skorohod topology to the Gaussian
process

(s ety - 1BFOa < =5}, 1B

where {B(x); 0 < x = [} is a Brownian bridge.

Although in this article we have studied the stochastic process related to the median
residual time, the theorems proved in Section 2 can be extended to a general percentile
residual lifetime (Amold and Brockett 1983) by introducing an appropriate definition
corresponding to Equation (2).

Finally, as an illustration we consider the following distribution function (Johnson and
Kotz 1970, p. 234):

F(:)=|—(’—‘). a>0, 1zk>0 (16)
!

It is easy to see that the mean residual lifetime does not exist if a < |. The median residual
life m,, however, exists for all values of @ and can be seen to be equal to

m, = 12" 7
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