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Szrocier’s protically normal test the Goldfeld-Quandt test. the Breusch-Pagan

Lagrange multiplier test and BAMSET. when it is possible 10 order the observations according to

increasing variance. With no prior information on variance ordering. BAMSET 1 best. Some
ing d h 1

observations egree of icity and model specification arc made.

1. Introduction

Tt is well known that in the presence of heteroscedasticity of error variances.
the least squares method has two major drawbacks: (i) inefficient parameter
estimates and (ii) biased variance estimates which make standard hypothesis
tests inappropriate. The importance of tests for heteroscedasticity is well
recognized and a large number of tests have been proposed. There are test
procedures for establishing a specific form of heteroscedaslicity. and a }v,de
range of tests for detecting only the presence or absence of heteroscedasticily.
See. for example, Goldfeld and Quandt (1965), Rutemiller and Bowers (1968).
Glejser (1969), Ramsey (1969), Theil (1971), Harvey and Phillips (1974).
Harvey (1976), Bickel (1978), Szroeter (1978), Breusch and Pagan (l97_9).
Harrison and McCabe (1979). White (1980), Carvoll and Rupert (1981). King
(1982), Barone-Adesi and Talwar (1983), Buse (1984), Ali and Giaccotlo
{1984), Evans and King (1985), and Judge et al. (1985, ch. 11). The various
tests proposed by these authors have been well reviewed in the last three listed
references, and so a further review will not be attempted here. We are
concerned with evaluating a computationally simple asymptotic test which was
proposed by Szroeter (1978) and which appears to have been overlooked in the
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studies listed above. This mt. ongnally desngned for structural and reduced
form relations in dy q models can, under ap-
propriate assumptions, also be used to test for heteroscedasticity in linear
regression models. A finite sample version of the test was shown by King
(1982) to be approximately locally best invariant under quite general condi-
tions and its power has compared favourably with that of a number of other
test procedures [Evans and King (1985)). However, because the critical value of
the finite sample version of the test depends on the set of regressors, this test is
compulationally demanding and unlikely to be computed routinely in standard
econometric computer packages. In contrast, routine calculation of the asymp-
totic tests could easdy lake place, m much the same way as the Durbin-
Watson statistic is ly computed to test for autocorrelation. See Harrison
(1980) for a discussion on the relative computational ease of a large number of
tests for heteroscedasticity.

We have chosen to compare S; *s asymptotic test with three others - the
Goldfeld-Quandt test [Goldfeld and Quandl (1965)), the Breusch-Pagan test
[Breusch and Pagan (1979)], and BAMSET [Ramsey (1969)]. The
Goldfeld-Quandt (G-Q) test has been chosen because it appears to be the
most popular test in applied econometrics and its performance has been found
to be satisfactory in many of the earlier studies. The Lagrange multiplier (LM)
test proposed by Breusch and Pagan (B-P) is also popular and is simple 10
compute. It, too, has been found to be quite powerful in the presence of
heteroscedasticity. The test BAMSET has been included following a suggestion
from a referee thal its performance is likely to be less sensitive to the
assumplion that, under the alternative hypothesis of heteroscedasticity, the
observations can be ordered according to increasing variances.

Monte Carlo methods are used to examine the four test procedures for two
different heteroscedastic variance structures with varying degrees of hetero-
scedasticity, and for small and large samples. Our results indicate that when it
is possible to order the observations according to increasing variances, Szroeter's
test is more powerful than the remaining three. When the observations have
not been ordered the performances of Szroeter’s test, BAMSET and the G-Q
test all fall dramatically and, as hypothesized by the referee, BAMSET is better
than the other two. The B-P test does not depend on whether or not the
observations are ordered, but does depend on similarly strong prior informa-
tion. Details of the variance specifications and the tests are given in section 2.
The set-up of the Monte Carlo experiment and the results are presented in
sections 3 and 4, respectively.

2. Variance structures and tests for heteroscedasticity
Consider a linear regression model

y=XB+u, =12,...,T, (m
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where X,=(1, x,) contains the constant term and the ¢th observation on an
explanatory variable, y, is the 1th observation on a dependent variable, 8 is a
(2x 1) vector of parameters, and the u, are unobservable normal random
errors with mean zero and variances as specified below. We restrict A and x, to
be of dimension 2 because this is in line with the design of our Monte Carlo
experiment, not because it is necessary for carrying out the tests. Two types of
variance structures are considered. The first specification is

V(u) =0l =exp(Z,8) = kx], ()
where
Z,=(1logx,) and &=(logk,v).

This model has been discussed by Geary (1966), Park (1966), Lancaster
(1968), Kmenta (1971), and Harvey (1976). and, following Harvey, we shall
refer to it as the multiplicative heteroscedastic model. The second variance
assumption is

V(u)=a?=(Xa)'=al{1+Ax), )
where

a=(ap. o), A=a/e X=(1,x,).
This model has been studied by Rutemiller and Bowers (1968), Glejser (1969)

and Harvey (1974) and we will refer to it as the additive heterascedastic model.
We shall now briefly describe the four tests.

2.1, Szroeter’s test

To begin we assume that in model (1) the exact form of the variances (o)
may not be known but that all the observations can be arranged in such a way
that 6} | 02, 1=2,3,..., T. This can be done cither with reference to certain
exogenous variables appearing in our model ( x, in our case), or on the basis of
predictive values of y, based on OLS estimates.

I e, = y,— X,B, where § is any consi i of B, the test statistic is
defined by

Q=r(i-—i)/[z)5(h,—i)‘]'. @
=1

where

F=%wh, w=eyLel h=T"'Lh,.
! [

]
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and h, is a set of T non-stochastic scalars having the property that 4,2 h, it
1>

Under the null hypothesis Hy: o =02, t=2,3,..., T, against the altema-
tive hypothesis H: o> 02, Q lollows a limiting normal distribution with
mean zero and variance unity.

Ifwelet hy=1, 1=12,...,T, the test statistic can be written as

o7y - 55) )

where
h=Y1e? /):,,1.
i t

The test statistic (5) is very simple to compute, and, because il is asymptotic
N(0. 1), the test is easy to apply. The observations for models (2) and (3) can be
arranged according to increasing variances by arranging the x’s in ascending
order. Also, for k we will use the residuals from the OLS estimator for 8. Note
that Q will be the same for both multiplicative and additive heteroscedasticity.
We will refer to this test as the SZ test.

2.2. Breusch—Pagan test

This test is based on Silvey’s (1959) LM test and was developed indepen-
dently by Godfrey (1978) and Breusch and Pagan (1979). The test statistic for
models (2) and (3) can be developed as follows.

Let &, be the OLS residual for the rth observation for the model (1), let the
estimated residual variance be §2=7"'L @12, and define r as a vector with
typical element 7, =(&2/6% - 1). Then, the LM statistic is

IM=4rZ(2'2) 2, {6)

where Z is a (T'X2) matrix with ¢th row given by Z,=(1, logx,) for the
multiplicative model and Z, = (1, x,) for the additive model.

Under the null hypothesis of homoscedasticity, LM in (6) is distributed as
X%y (If Z, was of dimension p, then LM would follow a x,.,, distribution.)
Because the test statistic for the multiplicative model is based on Z,=
(1, log x,) and for the additive model on Z,=(1, x,) we will have two LM
tests. The first we refer to as the Breusch-Pagan multiplicative [B-P(M)] test,
and the other will simply be referred to as the Breusch-Pagan (B-P) test.
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2.3. The Goldfeld-Quandi test
The test proposed by Goldfeld and Quandt (1965) is carried out as follows.

(i) Amange all the observations according to increasing variances as in
Szroeter's test.

(ii) Discard ‘¢’ central observations and fil two separate regressions 1o cach
of the remaining (T ~ ¢)/2 observations.

(iii) Obtain S, and S, the residual sums of squares from the regessions fitted
to the first and last (T - ¢)/2 observations.

(iv) Under the null hypothesis of h dasticity the statistic R = $,/S,
has an F-distribution with [(T-¢—4)/2, (T~ c—4)/2] degrees of
freedom,

In our experiments where we used sample sizes of T'= 20 and 50, we set c =4
and 10, respectively.

2.4. BAMSET
The version of the test BAMSET [Ramsey (1969)] which we employed is
given by

T-22
BS =(T-2)logd - 3 ¥ logs?, n
i=1

where

T
§1=(r-2)' Ll s=(3/T-2) Lk,
=1 1€5,

and the &, are the OLS residuals. Note that, for our settings of T. (T - 2)/3 is
an integer. The sets of observations used to define the three residual groups are
as follows. For T=20, §={1,2...,7). §=(89.....13). §=
(14,15,...,20). For T=50, 8, =(1,2,...,17}, §={18,19.....33). §,=
{34.35,...,50). Under the null hypothesis of homoscedasticity BS is treated as
an asymplotic x%, random variable.

Other versions of this test can be constructed depending on the number of
the groupings and whether alternative sets of residuals such as BLUS [Theil
(1971)] or recursive [Harvey and Phillips (1974)] are used in place of OLS
residuals. Our choice of three groups was based on Ramsey's recommendalion;
OLS residuals were chosen b of their putational case and their
apparent superiority in experiments conducted by Ramsey and Gilbert (1972)
and Ali and Giaccotto (1984).
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An important characteristic of cach test is the amount of prior information
required concerning the type of heteroscedasticity under the alternative hy-
pothesis. The SZ test assumes the observations can be ordered according to
increasing variances. The G-Q test makes a similar assumption, or at least that
the observations can be placed into two groups — one containing observations
with potentially high variances and the other containing observations with
potentially low variances. The B-P test requires knowledge of the expl y
variables upon which the variances depend. With one explanatory variable
such prior information is similar to that required by the SZ and G-Q tests.
With more than one explanatory variable the B-P test requires relatively less
prior information because a decision about the relative importance of different
explanatory variables is not needed.

Ideally, the observations should also be ordered for BAMSET. However,
relative to SZ and G-Q, we would expect the decline in power of BAMSET to
be less sensitive to an inappropriate ordering. This hypothesis was tested by
estimating the power of SZ, G-Q and BAMSET for both ordered and un-
ordered observations. The performance of B-P does not, of course, depend on
the order of the observations.

3. Set-up of the Monte Carlo experiment

Throughout the experiment B was set at 8= (f,, 8,)’ = (10,1)". Two differ-
ent sample sizes T =20 and T = 50 were considered; and the x,’s were initially
generated from two different distributions, uniform and lognormal, and were
then held fixed in repeated samples. The lower and upper parameters of the
uniform distribution were, respectively, 20 and 100; in the lognormal case, the
x,'s were found from x, = e%, where the g,'s were generated from N(3.8, 0.4%).
Five thousand replications were generaied for each combination of sample size,
regressor type and error variance model. The u,’s were drawn from a normal
distribution with mean zero and variances given by (2) and (3) for the
multiplicative and additive models, respectively. The severity of the hetero-
scedasticity was controlled by varying the p v and A; we idered
18 values of A between 0 and 2.0, 55 values of y between —7 and 7, and an
additional 6 values of A equal to 10, 50, 100, 500, 1000 and S000. For negative
values of y the observations were ordered according Lo decreasing rather than
increasing values of x,. The powers of all five tests (SZ, B-P, B-P(M), G-Q, and
BAMSET) were estimated by calculating the proportion of rejections in 5000
replications at a 5% level of significance.

4. Results

A convenient measure of the degree of heteroscedasticity which was sug-
gested by Surekha (1980), and later used by Evans and King (1985), is the
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Table 1
Powers of tests for selected models and parameter values.
Tests
Model*  Parameter  CofV sz G-Q B-P  B-PM) BAMSET
AL A=004 0410 0534 0.464 0416 0.400 0.275
ML y=135 0416 0.557 0.489 0429 0.421 0.2%4
AU A=0.03 0412 0.597 0.541 0.470 0444 0.345
MU y=125 0.406 0.591 0.536 0.461 0.446 0343
AL A =500 0.619 0819 0.764 0.703 078 0.568
ML y=2 0619 0819 0.764 0.703 0nsg 0.568
AU A =500 0.608 0.887 0.847 0.800 0812 0692
MU =2 0.608 0.887 0.847 0.800 0812 0692

The code for model type is : M = multiplicative, A = additive, U = uniform and L = logaormal.

coefficient of variation of the variances (C of V). This measure is invariant
with respect to the units of measurement of the variables and, for a given
x-vector (lognormal or uniform), it turns out to be the major determinant of
the powers of the tests. In table 1 we have presented the estimated powers
of the tests for some selected values of A and y which lead 1o similar values of
the C of V. Whether or not the heteroscedasticity is multiplicative or additive
has little bearing on the power of each test when the x-vector is the same and
the C of Vs are similar. In fact, in the last four rows of the table the powers
are identical for identical C of ¥’s. This result generally held throughout,
although there were some instances where there were slight differences in the
powers for identical C of V''s.

Another result iliustrated by table 1 is that, for a given C of V. the power of
each test is greater for uniform x than for lognormal x. This result also held
throughout, except for a few cases when the C of V was less than 0.3.

Considering negative values of y for the multiplicative model is equivalent
1o considering two more types of x for that model - one which is the inverse
of uniformally distributed x and one which is the inverse of lognormally
distributed x. A general comparison of these results with those for y>0
showed that the powers of the tests for y >0 tended to be greater than the
powers of the corresponding tests for y <0 and similar C of V''s.

When A was increased from 50 to 5000 the C of ¥''s and the powers of the
tests did not change, suggesting that there is an upper bound to the degree of
heteroscedasticity (C of V') which can be modelled using the additive specifica-
tion. Investigating this matter further, we considered the square of the C of V

defined by

(CofV)z'ﬁ{E",‘— (Z;})’}/(lTZo‘,}z. @
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Table2
Maximum co¢fficients of variation of the variances.

Model
AL 2 50) AU(A 2 50) M{max) MLiy=7)  MUiy=7
T2 010 067 441 225 169
T=50 062 061 707 206 154
Substituling for o2 from (3) and taking limits yielded
T? 1 1
. 2
B, = tim (Cof V)= o { BT - 7). o)

Thus, there is indeed an upper bound to the degree of heteroscedasticity which
can be modelled with an additive heteroscedastic specification. A similar
exercise applied to the multiplicative specification yielded an upper bound of

UB r (1 1) T
*TT-1 o
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Fig, 1. Power of tesis: Unordered observations, 7 = 20.
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Thus. there is also a limit to the degree of heteroscedasticity which can be
modelled using a multiplicative specification, but in our experiment we did not
consider values of y sufficiently large for the results to show any evidence of
such a limit. Table 2 indicates the maximum C of Vs |square roots of (9) and
(10)) obtainable for the data in our experiment, as well as the largest C of Vs
that we idered for the multipli model (y> 0). Note that the upper
bound for the multiplicative model does not depend upon whether or not the
x's are uniform or lognormal. It is evident, both [rom table 2 and a compari-
son of (9) and (10). that the maximum degree of heteroscedasticity which can
be modelled using the additive specification is much less than that achievable
using the multiplicative specification. With the additive specification the maxi-
mumn degree of heteroscedasticty is not sufficient, even when T= 50, for the
power of any of the tests to become unity. See table 1. In contrast, with the
multiplicative specification and T =50, the powers of all tests have reached
unity for C of V = 1.81 with lognormal x, and for C of V= 1.24 with uniform
x; these values are well below the upper bound of 7.07. These findings clearly
have general implications for h dastic error model specification.

We turn now to a discussion of the sizes and relative powers of the five tests.
With respect to the sizes, we first note that, for a proportion of 0.05 and 5000
replications, the standard error of an estimated proportion is 0.0031. With
T =50 and the homoscedastic case (A = y = 0), all estimated proportions were
within the range 0.05 + 0.0062, although the B-P and B-P(M) tests, with sizes
of 0.047 and 0.044 for uniform x and 0.044 and 0.045 for lognormal x, were at

PROPORTIONS OF REJECTIONS
0 01 02 035 04 03 06 0.7 08 09 1.0
f

—T T 7 T T T T T T T
00 02 04 08 02 10 1.2 14 V8 18 20 22
COEFF. OF VARIATION

Fig. 2. Power of tesis: Ordered observations, 7= 20.
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Fig. 3. Power of tests: Unordered observations, 7~ 50,

the low end of this range. In contrast, with T = 20, only the finite sample G-Q
test had an estimated size within the specified confidence interval. All the
asymptotic tests (SZ, B-P, B-P(M) and BAMSET) had finite sample sizes well
below the specified 5% significance level. These sizes ranged from 0.031 for SZ
and BP with lognormal x to 0.038 for BAMSET with uniform x. Similar
results for the B-P lest were reported by Godfrey (1978) and Breusch and
Pagan (1979).

As mentioned earlier, the relative powers of the various tests are likely to
depend heavily on whether or not the observations have been ordered accord-
ing 1o increasing variances. In figs. 1 to 4 we have graphed the powers for both
ordered and unordered observations for the multiplicative model with
lognormal x and y > 0. These powers are graphed against the C of V since it is
a reasonable measure of the degree of heteroscedasticity, and the results for
additive heteroscedasticity (and lognormal x) are essentially identical, except
that they do not extend beyond C of V’s greater than 0.70 (T = 20) or 0.62
(7 = 50). We have not presented the results for y < 0 and uniform x because
these cases led to identical conclusions about the relative powers of the tests.

From figs. 2 and 4 we observe that, when the observations have been ordered
according to increasing variances, the SZ test is most powerful, followed by the
G-Q test, the B-P and B-P(M) tests (which are very similar), and BAMSET.
For T =20, the G-Q test is better than SZ for low and high C of Vs, although
the difference in performance at the low end seems to occur because SZ has
incorrect finite semple size,
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Fig. 4. Power of ests: Ordered observations, T= 50.

Figs. 1 and 3 show the powers of the SZ, G-Q and BAMSET tests when the
observations have not been ordered ding to i ing vari The
powers are very similar, and very poor, for C of Vs up to 0.6. After this point
BAMSET is clearly best since its power function begins to rise more sieeply
while the other power functions only gradually i (T=50) or fali
(T'=20). With uniform x (which we have not graphed). the performance of
BAMSET was similar, but the power functions of SZ and G-Q gradually
increased for 7= 20 and fell for T = 50. These results, and an examination of
the x-vectors, showed that whether the powers of the SZ and G-Q tests
increased or remained below their size did not depend on sample size but
rather on the distribution of the unordered x's.

§. Conclusions

If it is impossible to order the observations according to increasing vari-
ances, and there is insufficient prior information to relate the variances (o some
explanatory variable(s), then from the tests that we have considered. only
BAMSET is viable. However, its power is extremely poor when compared with
that which can be achieved, by any of the tests, if the observations are
appropriately ordered. Such an ordering leads to a clear prescription for
Szroeter's test. Given the ease with which both Szroeter’s test and BAMSET
can be computed, and given their respective superior performances under
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circumstances of some and no prior information about variances, we feel that
serious consideration should be given to the routine calculation of both these
statistics.

The maximum degree of heteroscedasticity which can be modelled using an
additive heteroscedastic specification is much less than that which can be
achieved using a multiplicative heteroscedastic specification. Due consideration
should be given to this fact when choosing a variance model for estimation
purposes.
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