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It is proved ihal a nondegenerate difusion process in the closed half space
G = |xe R% x, 20}, where d> 2. with Wentzell's boundary conditions does nol hit
any speaified point on the boundary. 1 198 Acuemuc Press. for

It is known that a Brownian motion in the unit sphere, with normal
reflection at the boundary, does not hit a specified point on the boundary
(see McKean [4]). The aim of this article is to prove that a non-degenerate
diflusion in the closed half space, with certain Wentzell-type boundary con-
ditions, does not hit a point on the boundary specified in advance. We also
give an application to a boundary value problem.

Let G={x=1x;,.a x,): X, >0}, 8G={xeR" x,=0} and G=GudG,
where d > 2. We have the coeflicients a, b defined on G, and a, 7, p defined
on &G, satislying one of the following two sels of conditions.

Conpmmions I (1) For each x€ G, a{x)={(a;(x)), ¢ ;a5 8 dxd real
symmelsic posilive definile matrix; a(-) is bounded and continuous;
a”'{) is also bounded and continuous.

(12) b+ )={h,(* ) hy(* )} is a bounded and conlinuous R%valued
function on C.

(13) y(-}=(r2* s val* )} is an R?'.valued function on 9G;
1, € CHOG) for j=2,..d.

(14) a=0asa (d-1)x(d—1) matrix.

(I5) p=0: or p is a bounded locally Lipschitz function which is
stricly positive at each point of 4G.
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144 5. RAMASUBRAMANIAN
The set of alternative conditions is

Conommons 1L (I11) In addition to (11) we assume thal for each
xeG. there exists a dxd real symmelric positive definite matrix
o(x) = {{a,{x))); ¢.,<u SUCH thal alx)=0(x)a*(x). ol ) is bounded and
conlinuous, and ¢ ~'( - ) is also bounded and continuous.

(it2) Sameas (12].

(13) y(- )= (ysl" b 740+ )} is an R~ '-valued bounded and con-
linuous function on 8G.

(114) For each x€dG, a(x)={(a,(xNh¢i,ca 5 a (d=T)x(d=1)
real symmetric positive definite matrix, and there exists a (d— 1) x (d- 1)
real symmetric positive definite matrix ¢(x)=((6,(x)));,, .., such that
2(x)=d(x)-d*(x). 6(-)and ¢ '(-) are bounded and conlinuous.

(115} Same as (15).

Deline
1 &L
=z X)— b lx)— 1
L 2“2_,""("6.‘, x,+,§ “)é‘.n m
and
A & 4 a
J_r":+i,_,z.ga"(‘\)m+,§:“(-‘]5-\7,‘ 2)

Let 2=C([0. oo ): G) be endowed with the topology of uniform con-
vergence on compacla and the natural Borel structure.

Under conditions less restrictive than the set of Conditions I, Stroock
and Varadhan [7]. have established the existence of a unique solution to
the submartingale problem corresponding lo the coefficients a. b, ;. p.
Following Walanabe [9]. Nakao and Shiga [6] have cstablished the
existence of a unique solution (o the stochastic dilferential equation
corresponding to the coeflicients o, b, a. y. p under conditions less restric-
tive than the set of Conditions Il. The cquivalences of these two for-
mulations can be found in El Karoui [3). (Here uniqueness is in the sense
of law.)

So, when Conditions 1 or 11 hold, for each x e G there exists a unique
probability measure £, on € such that

(1) P{X()eG forall t20and X(0)=x}=1,
(2) SOXON=Jb Lo (LI X))

is a P -submartingale for any fe C2(R¥) satisfying J/ 2 0 on 0G, and where
X(1) denotes the 1th coordinate map on £2; also the process X(/) is strong
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Markov and Feller continuous. Further, there exists a conlinuous, non-
decreasing, non-anticipaling process £(1) on 2 such that

) &= rglte dele) (%)
and

@) S00)= [ Uer (WX = [ Jx@ndeta) by

is a P.-martingale for every fe C2{R”). We shall call the family | P,: xe G}
the diffusion corresponding to (L, J).

We first prove a theorem which effectively reduces the problem to the
case of normal reflection; this theorem may be of independent inlerest. But,
we first need a few lemmas.

LeMMa |, Let g: R™ = R™ be a bounded and continuous function (ie., the
image of g is contained in a compact set). Define g, :R™-R™ by
gilx}=x+g(x). Then g, is onto.

Proof. Let zeR™ be fixed. Define h.: R™ = R™ by h.(x)= —g(x)+z
Since the range of k. is contained in a compact set, by Brouwers fixed point
theorem, there exists xe R™ such that h.(x)=x, ie.. z=x+g(x). This
shows that g, is onto.

Lemma 2. Let Conditions 1 hold. There exists a C*-diffeomorphism
T:G =G, given by (), ¥t ¥2) = T(214 230 24)s Such that the following
hold:

(i) T is identity on 0G.

(i) Under T7%, J=3fdy,+3 ,7,(y)8/3y, is iransformed 1o
J=d/dz, on 3G.

(iii) L., given by (1) (in the variables y,..., y,), is transformed 1o a
strictly elliptic operator L with bounded coefficients (in the variables
1 Zgaen 2g) under T, and L has a represemation like (1).

Proof. By condition (I 1) there exist constants a, >0, M > 0 such that
lag(x)I <M  forall xe G, 1 <i,j<d,
and

o= inf{cigenvalues of a(x): xe G}.
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We first consider the case when there is a constanl y such that

Il | 2 |

For x=(x). Xpua b let 2= (0, %
we have

iy
n\.a N TV s 14\

.. Xz). Nole that by (4), for . '€ 7G.

=3 S (d= 1 pile -2 51
Let 2 be such that 0 </ < 1/(2dp); let ¢ be a smooth function on { -1, x)
such that ¢ is non-decreasing, |¢°| € 1. and vy =r il v € |z and @irye il
v Define T:G -G by
(rrrea Y= Tlo 2 )
=500 Zreen Sy E MO0 7 D 73N 161
We claim that T is onc-lo-one: indeed. let T(z).:,...z)=

Tz, e 20) By (60, it is clear that =y ==x}: and hence. ¢1:z,)=4lz))
Therefore =+ (=) 1(2) =2+ @(=,) 71Z"). Consequently by (51

[E=21=g= i) =y EN €2 Jd =1 pl =2 <}2= 51

which is a contradiction unless 3= Thus T is 1-1. By Lemma i, Tis
onto. {Actually T is one-onc and onto on every {=, =constant}.) Since
$10}=0. it follows that 7 is idenlity on 0G.

Since T is a bijection, from (6). we may write

[ET T s SR o Bt | = [ (T £ N 3 )
={F 1 ¥ e Y = 00 O3l 3 U000, n

where 0, v}=17,(3())), with  expressed as a function of y.

Since 3's are twice continuously differentiable. by inverse [unction
theorem it follows thal the transformalion 7 is a C"-diffecomorphism and its
inverse is also a C’-diffeomorphism. Thus, 0,'s are twice dillerentiable as
functions of .

Next, we claim that

i

[t]]
Jy,, T=(dAn)
To that end, set y, =0, 0,=0; @,0={(30,/dy,..00/a,), da=
(/22p.s Byd0z,) for p=1,2,..., d. Here it may be noled that y,... y,can
be considered functions on G by making y,(x) =y,()) Let D,y denote the
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{dxd) matrix given by (D.y)u=(dy/0z,). Then a simple computation
shows that

[ +4(3 D] 8,0=4,y, %)

where [ is the (dxd) identity matrix. Since I$(y,)dy/0z,) <in and
dlu <, it follows that [7+¢(y,) D.y] " exists and

1 D, X
10+ #0000 S s

Hence by (4) and (9) we get

12,01 <= i

—(dig)’

whence (8) follows.
Now for any smooth function g, by (7), we obtain

Fi) 4, g
2%, 2[ S8y - m.)—]é—

dy, t?z,
B
[ 4 ’] %

dg
) [ - ')By]éz +,§1
for i=2....d. Since $(0)=0, ¢'(0)=1, and O,(y)=y,(7) on {y,=0}. it
follows from (10) that

& [
—t ¥} —
[a)'l ,.Zz y’(”a)'l]

This establishes conclusion (i) of the lemma.
Dillerentiating again, it can be shown that, for i, j=1,2,...4,

(10)

(1

nes 071l

() _ g
dy, 0y, 62,6z,+ Z s

ki=

)Lﬂ'm order terms, (12)

where 0f,=084; since |§1 <A, #'1<], 18))<p<], by (4), (8), and the
calculations leading to (12), it can be proved that

LIRS (13)

_4
-

MEN L0
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Now [rom (12) we get

Z/()

b=

53( )

+Z”()

= Z Lay(- Y +n,( )]_g( + first-order terms, (14)

L=
where (- 1=T4,_,a,(-)84(-). In view of (13) it is easily scen that for
any {={{,...{ ) in B

[@ES ul(l - (15)

(d)u)

Since diy < {, we have from (4) and (15),

l aMd* .
..;Z-:| (ll.,+'h,)C,C,?[ﬂa-l—_mll]lfl'>0
for any { #0. 1t may be noted that there are no terms of the form ¢ -1 g(-)
in (12). and hence in (14). Thus L, given by the right-side of (14), is
uniformly elliptic (in the variabies =, z,.... =,). This completes the proof in
the special case.

In the general case, since 3, € C3(2G). there exists a constant K, such

that

he
L)

" dzg iz,

Ir,l.‘% <K,
Choose K large enough that K /K <a,/(8Md"). Note that the diflusion
corresponding 1o (L. J) is also the diflfusion corresponding to (L. (1, K)J)k
Set 5y=Kzy, =z, j= e d J ) = (1/K) 3, (2) for z€0G. It is then
easily seen hat the general case is reduced to the previous case with the
new cllipticity constant ay(K A 1): also {1/K)J in the z-coordinates is
transformed 1o &/83, + X7 §,(20€/22,) in the Z-coordinates. The lemma
now follows in the general case from the special case considered
previously. |l

We can now state our first theorem.
THEOREM 1. Let Conditions | hold: et L.L. J. ], T be as in Lemma 2. Let
{P.:ye G} be the diffusion corresponding 1o (L, J). Let T: Q ~ Q be defind

by ('I"u')(l): Tiw(i)). Tisa homeomarphism on . Set P_.= P,7". where
y=T(z). Then {P.:z€ G} is the diffusion corresponding 10 (L. J).

Proof. Let #,=a{X(sx0<s<1} be the natural filtration in Q. If
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Eed,. note that TE, T~'Eed,. Let f& C3(R?) be such that J7>0 on 3G.
Define [ by setting J(¥)=/(T""y). Notc that Jf(y)=Jf(z), where
y=T(); consequently J7>0 on 3G. Hence

Joxton = [ Uer (L7000

is a P,-submartingale (with respect to &,}.
Note that by Lemma 2

U (ENUT"X (0 wh) = [l (L])1(X(1, w))

for all # and all we Q. Consequently, an elementary argument involving
change of variables yields that

)= ] U tZNNK ) o

is a P.-submartingale. This completes the proof. [

Remark. Le1 Conditions [1 hold: in addition, let y, € C3(0G). Let T be
defined as in (6). Since $(0)=0, the calculations leading 1o (12) show thal
for 2, j < d. 3%g/(dy,0y,)=0"g/(9z,0z)) on G. Consequently, analogues
of Lemma 2 and Theorem | hold in this case with J given by (2) (in the
y-variables) and J = 8/0z, +§3¢, _ a, () 8*/(82,02,).

Herealter, L and J will be as in (1) and (2), that is, in the x-variables.
We need a few lemmas.

LemMa 3. Ler Conditions 1 or 11 hold: let {P,:xeG) be the diffusion
corresponding 1o (L.J). Let U be a bounded open set in G. Then
SUP v Elny) <00 and sup, .y E(E(ny)) < 0, where & is as in (3) and
n =inffr20: X(1)¢ U}

Proof. Let he C}{G) be such that h{x)=e* for x =(x,,... x,) in U and
q is a suitable positive constant so that Lh> 1 in 0. Note that Jh2¢>0
on éGn U. By (3b) and optional sampling theorem, for cvery T>0

wa T
E, [mxm A m—h(xton—fo' U (LA))(X(w)) du
qua T
- Jh(andc(u)}o (16)

for xe U and X(0)= x. Since h is bounded, Lh> 1 in O and Jh >0 on 4G;
by (16) and monolone convergence theorem it follows that
sup, v E.(ny) < 0. Again, since h is bounded, Jh2¢>0 on 0Gn U and
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Lh>0in 0. by (16) and monotone convergence theorem it follows that
sup, i Eclélnu)l< oo,

Fix {€G. For x€ G such thal x #{. define

- e =8, =)
Axy= Y a"(")_lx—ﬂ’ .

el

i d
Blx)= Y, a,(x).Ci(x)=2 } hlx)x,—{,)

=l 1=l
For r >0, define

B“’)=. p Blx)— A;0x) + C;(x)

-~ A:(x)
B = A+ Clx)
Birk= inf PHTS)
Let ¢> 0. Define for r2c,
- 1 7 |
Latn=[ B d. R

F..ln= ]" exp(—T. (u)du. F . (r)= J’ expl =1, (u}) du,

and let [, (x)=F, . (Ix=¢N and f, . (x)=F,(Ix=|)
Let H be a real-valued twice continuously differentiable funciion on
{0, ), and let A{x)= Hi|x—{|). Then il is easily seen that for |x —¢| >0,

Hi(lx=4l)

L) = A () HY(Ix =)+ ——
Ix=¢|

(B(x)= A {x) + C;(x)) (17)

LemMa 4. Let Conditions | or 11 hold: let {€ G be fixed. Lot ¢ anid n be
fixed real numbers such that ¢ <n; let x€ G be such that ¢ < |x ~ | < u: and
ler v, =inl{120: | X(1)={]=c or n). Then

F{lx=%) |
F,;(n) + F.;(n)

E, [I Xt dé(ui]
0
<SP (Coam < Tamg. o)

Fallx=h 1 “ "
W-*F.—.((ME'[L j]'r"(X(u))d{(u)]. )

<

where for a closed set K in G, v, =inf}120: X(1)e K.
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Proof. Note that, by Lemma 3, 1, < as. P,. We apply (3b) to the
functions f,; and J,; and proceed as in the proof of Lemma 2.1 in Bhat-
tacharya and Ramasubramanian [2]; finaily an application of the optional
sampling theorem yields the lemma. We omit the details. |

Remark. Suppose L transforms smooth radial functions into smooth
radial functions. Further, let J=9/dx,. Also, let { =0 for simplicity. Then
Aglx}and B{x) + Cy(x) are easily seen to be radial functions; consequently
B=p. Also JT= =0 on 3G. Hence (18) becomes

Foollx]) Feollxi)
F:,(n) =P (Como:m < Tamo:1) = F:.,(n) . (19)
Since L transforms radial functions into radial functions, by (17), it can

be seen that solving Lh(x)=0 in c¢<|x|<n is reduced to solving a
(1-dimensional) second-order ordinary differential equation in the interval
{e.n). The latter can be done easily, and (19) thus gives the solution to the
probiem:

Lhix}=0 forc<|x|<n, Jh{x)=0 forxedG,
hix)=1 for|x|=n, h(x)=0 for x| =c.
In the general case, for {€9G, P (Tspqm) <Tosy.) is bounded above
and below by similar radial functions (which are harmonic for an elliptic

operator which transforms radial functions into radial functions), plus
jon terms dependi ially on the boundary conditions (cf. see

L[ll, 2].

We are now in a posilion to prove our main theorem.

THEOREM 2. Let Conditions1 or 11 hold, and let {€3G. Then for any
n>0 and any x such that 0< |x—{] <n,

lfi{‘g PlConcm < Tamg:)) = 1. (20)

Consequently, the diffusion does not hit a point on the boundary specified in
advance.

Proof. (i) Let Conditions I hold. In view of Theorem ! it is sufficient to
consider the case J = d/dx,. In such a case note that Jf., =0 on JG. Then,
as F, (Ix~{|)fF (n)—1 as c|0 for any n>0 and any 0<|x~{|<n,
(20) follows from (18).
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(i) Let Condilions Il hold. Let x€ G be fixed and x#{. Let n>0 be
fixed. Let £> 0 be given. Choose ¢ > 0 such that

Follx=qD_
Wﬂl £). (21
Note that constants 7, j=2...,d can be chosen so that

H. (320, foregly={lsm yedG, (22)

where

d
J=J+ ¥ a1,

g2

2

ax;

Let Q be the diffusion corresponding to (L, J), starting at x. Note that, by
a Girsanov-type Iheorem (Nakao and Shiga [6. pp. 453, 468]).

v =% =exp{i rmun—l )f f*éu)}
r.l_dP‘ . ot ) 2,_3 i A

where (B,(s).... By(s)) is a (d— ||dimensional P,-Brownian motion
independent of ().

Write A ={tomem < Gmn} 304 4, = {{Togz 0y A ) <(Tag; A 1)} By
(18}, (21). (22) applied 1o the (L, J)-diffusion, we get

QL) > (1 —¢).

Consequently, §{A,)> (1 —¢): and hence
| vaap>0-c @)
A

Note that P (y.,>1)=0 as r—o. Hence (23) implies that
lim, ., P,(A4,)> (1 —c). Thus P (4)> (] —¢), whence (20) follows. This
completes the proof. |

We now give two applicalions.

CoroLLARY ). Let Conditions | or 11 hold. Let D he a hounded open set
in G satisfying an exterior cone condition (in G) and such that DG isa
Sinite set. Let v=inl{120: X(1)¢ D}. Then t is continuous P, —u.s. for any
xeD.

Proof. Set v=inf{r20: X(1)¢ D}. 1 can be seen that v is upper
semicontinuous and that t' is lower semicontinuous, Therefore, it is sul-
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ficient lo prove that P, (r=1')= I. Since, by Theorem 2, P, (X(t)€ G)=0,
it is sufficient to prove that P, ('>0)=0 for any y€dD, y ¢ G. Because
of the 0-1 law, it is sullicient to prove that P, ('>0)#1 for any yeaD,
y¢0G. This now follows from the exterior cone condition and the support
theorem of Stroock and Varadhan [8, Ex.6.7.5]). 1

COROLLARY 2.  Let Conditions | or |1 hold: let p=0. Let D and 1 be as in
the preceding lemma. Lei f, g, h be bounded and continuous functions respec-
tively on D, 3D, 0G. Then

u(x)=E, [x(X(t))—I;/(X(s))ﬂ—j:h(x(s}) dé(:l]

is contimtous on D.

Proof. In view of Lemma 3, note that u is well defined and bounded. By
the preceding corollary and Feller continuity, the corollary lollows. |l

Remark. Note that u defined as in the preceding corollary is the unique
solution to the boundary value problem

Lu=f onD, u=g ondD, Ju=h ondG

that is,
wxtea )= sy - [ hE) et

is a P -martingale, and v=g on 3D. If D is as before and is connected,
/20in D and il u(x)=0 for some xeD, x¢3G, then by the preceding
corollary and Lemma 2.3 of Bhattacharya [1] it follows that #=0in D.
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