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ON THE INFORMATIONAL SIZE OF MESSAGE SPACES FOR
EFFICIENT RESOURCE ALLOCATION PROCESSES

BY PARKASH CHANDER'

This paper develops a Irnmewoyk of znnlys:s for studying the informational properties
of a certain class of “p ™ resource It is shown that the Taylor
process (reluled 10 certain ideas for planaing in the wullcd socialist economies as put
forward by Taylor (26)) is informationally cfficient in the sense that any informationally
decentralized resource allocation process which has similar (stalic) properties (Pareto
optimality) must use a mexsage space which 1s dimensionally al least as farge as that of the
Taylor provess. We also show thatin gmcml greater mlormalmnnl ducnlmlru(mn can he
achieved through p ic than through

1. INTRODUCTION

THE PURPOSE OF THIS PAPER is to study the informational properties, for example,
the minimality of the di ion of the ge space, of certain resource
allocation processes. One such process, the Taylor process {6, 20, 28] (related to
certain ideas for planning in the so-called socialist economies as put forward by
Taylor [26]), is shown to be informationally efficient in the sense that any
informationally decentralized resource allocation process which has similar
(static) properties (Pareto optimalily) must use a message space which is dimen-
sionally a1 least as large as that of the Taylor process.

In a study like ours, the resource allocation process becomes the unknown of
the problem, rather than the datum, and the significance of the result concerning
the informational efficiency of the process. such as the Taylor process. becomes
dependent upon the size of the domain of variation of the unknown. For
example, if the domain is so small as 10 exclude every process other than the
Taylor process, then the informational efficiency result follows as a triviality. Tt
thus needs to be qualified that the informational efficiency of the Taylor process
is proved over a sufficiently large class of processes. This is shown to be a fact by
proving that the class includes several processes other than the Taylor process,
for example, the Malinvaud-Taylor process (6. 20).

One motivation for undertaking this study is that the development of the
theory of ecopomic organization in the tradition of Lange, Lerner and others has
focused on the Taylor process (see, for example, Lange [18]. Schumpeter [25],
Dobb {11), Arrow and Hurwicz |2], Hayek {12}, Malinvaud [20], Ward |28]. and
Marglin [19]). Another motivation is that it leads to the development of a
framework of analysis that may be of general interest (see. for example. Chan-
der [9]).

In fact, our framework is more general than that of Hurwicz (3. 15] and
Mount and Reiter {21}, which was originally developed for the purpose of
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920 PARKASH CHANDER

studying the informational properties of the compelitive process in the context of
classical environments. The Hurwicz and Mount and Reiler framework has

i (see, for ple, Hurwicz {14), Calsamiglia (4], Walker
(27] Jordan [16] Osana (23], and Jordan [17)), and has stimulated this work, but
it is not broad enough to enable us to inquire into the informalional properties of
certain type of processes. In particular, we cannot place the Taylor process
within their framework (nor, for that matier, can we place a certain generalized
formalization of the competitive process (see Chander [9])). This is mainly due to
the following two difficullies.

First, the environment class, over which the Taylor process performs effi-
ciently, is not the Cartesian product of the sets of characteristics of the partici-
pants in the process. Instead, owing to the feasibility requirement, it is a
nondecomposable proper subset of the Cartesian product.! Thus, we develop a
generalized definition of the uniqueness property and a generalized single-
valuedness lemma Ihat are suitable for this type of eavironment class.

Second, the Taylor process is parametric in the sense that its oumome runclion

is parametric.’ Traditionally, the p ic p have been regarded as too
general to be of interest. In parucular. Hurwu:z (13, 15] and Mount and Reiter
[21] restrict themselves to p The present sludy develops
for the first time a fi tk for analyzing the informational propertics of
parametric processes.

The contents of this paper are s [ollows. Section 2 summarizes the notalion
and definitions concerning the environments, which consist of two or more
producers and a single consumer. Sections 3 and 6 stale, respectively, the Taylor
and the Malinvaud-Taylor processes and prove he local threadedness of their
equilibrium message correspondences and the lower hemicontinuity of their
(lower) inverses. Section 4 gives two results: (a) The Taylor process is informa-
lionally efficient among the broad class of parametric processes (Theorem 2). (b)
The Malinvaud-Taylor process is informationally efficient among the restricted
class of nonparametric processes, but not among the broad class of parametric
processes (Theorem 3). In each case an appropriate single-valuedness lemma is
used (see Lemmas 2 and 3 below) and a suitable smoolhnm eondilion (local
threadedoess of the equilibrium ge cor d is imposed. Section §
gives all the proofs of the results in the above mentioned Sections as well as those
of some auxiliary results. Section 7 presents the conclusion.

*1n the case of classical covi the feasibility requi that trades add to zero restric
trades 10 a hyperplanc bul such (nontrivial) feasible rades exist atways and, thus, the environment
class such that feasible irades exist is the Cartesign product of the scis of charactenistics of the agents.
Bul one can well imagine eavironments of a certain type in which the charsctenistics of the agents
may be such that feasible trades do not necessarily exist. In such cases the feasibility requirement can
lead 10 8 nondecomposable environment class.

3The generalized concept of a parametric process as opposed 1o thal of a “concretc™
(“nonparametric™) process is due originally to Hurwicz |14). In a nonparamelric process the final
allocations of the sgents are determined on the basis of the equilibrium message alone. Whereas in a
pamamketric process the characleristcs of the agents alio enter the computations, though in &
decentralized fashion.
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2. THE ENVIRONMENTS

We shall consider the economies with n commodities and n agents (producers
and ). The set of dities as well as the set of agents are denoted
by N={l,...,n). Each agent i, i=1,...,n -1, is a producer and the nth
agent is the sole consumer. Each producer is characterized by its technology set
(a collection of vectors, each representing a basic activity). And the nth agent is
characterized by its resource endowment and utility function.

Let C denote the set of all closed and strictly convex sets in the commodity
space R” (the n-dimensional Euclidean space). Then the set of all conceivable
technology sets for agent i, i=1,...,n—1,is

E'=(T'e€C:loreverya€ T, q,=landq, SOVk #i;
there is § > O such that for everya € T', 2, < -8},

These ions on the technology sets mean no joint production and indis-
pensability of commodity n (labor) as a nonproducible factor of production.*

Let w* denote the vector (0,...,0,1) € R”; then the ser of all conceivable
resource endowments for agent n is denoted by

W* = (w*),

the consumption set by R’ ,, and the set of all conceivable utility functions by

U= [u:RL—-)R:LhereissomeaER:, such that Ye; =1 and
i
u(x)=[]x%forall x € R’;,].’
i

Let
Er=UxX W,
and let £° denote the Cartesian product of the E':

E°=E'X - - X E"
A generic element of £° will be denoted by e = (e', .. ., e"). Note that each ¢'
(i=1,...,n—1)isa closed and strictly convex subset of R". The set £ will be

“The model of technology that is adopted here was proposed by Samuelson [24] as a generaiization
of the Leontiel model. Tt is worth noting that one can broaden the environment class by rrluin;
some of the assumptions of this model and still obtain similar results. Firsi, the convexily resiriction
can be completely dispensed with, Second, the assumption of one primary input, “lsbor™ in the
model, can be dropped. Insicad, there can be some or all dities which can be purchased by the
production system in any amount for a prescribed price. (Typically, these excgcnous commadities™
might include labor services of varying skills, raw malerials, and some fixed capital services). Such a
model will appronimate an open indusirial complex in a partial equilibrium setting where the prices
of gumhmd inputs can be treated as fixed. A further comment in this regard is deferred 10 Sectioa 7.

=[{xER": x,Z0Vi,and R} ,= [xER": x, >0 Vi).
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referred to as the space of characteristics of agent I, | € N. Let
§*={a€R":a+w* ERY,}

and

r(e)-[(a'....,n")ee‘x Xe""XS‘:a"-lz—:la’x,
i=1

forsomex, >0 (i=m1i,...,n~1)).

Then §* denotes the set of all feasible net trade vectors of the nth agent and r(e)
denotes the set of all feasible combinations of the activity vectors and net trade
vectors in e. Let E be the subset of E° defined as

E={e€E®:r(e)#0).

Then E is the environment class. The environment class £ has the following
properties in relation to E°. For each E* C E and i € N, let L'(E®) denote the
ith coordinate set of E*:

Li(ESy={¢ EE’:(;‘,‘...,e"',e’.e"',....e")EE
forsome (e!, ..., e\ e/*!, ... ")
EE'X - XE"'XE"!'X .- xE"}
and let L(E®) denote the Cartesian product LY(E®) X « - - X L(E®).
PROPOSITION 1: For each i € N, L'(E) = E' and L(E)¢ E.
Let 8: E—> R™ be the correspondence’ such that for each (e',. .., e") € £,
B(e) = {(d",...,a") Er(e) 1u(a" + w*) Zu(b" + w*) forall
(..., 6" Ex(e)))

where (1, W) = ¢,

SLet X and ¥ be two nonempty sets. A correxpondence Fof X into Y {often writien F: X = ¥)isa
rule which associales with each element x of X a (possibly emply) subset F{x) of Y. If F{x) is one
element set for every x € X, then F is said 10 be single valued, a0d il is identified with the function
J: XY such that F(x) = { f(x)) for every x € X. Given & nonempty subset 4 of X, the image F(A)
of A under Fis defined a3 F{4)={y € ¥: y € F(x) for some x € A}. The domain and range of F
nre defined as dom F = [x € X : F(x)» @) and range F = F(X).

TWe find il convenieat 1o refer Lo the ordered a-tuple (', ... ., a*) as the n’-dimentional vector
with ¢/ in the {n{/ = 1)+ /)b component.
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PROPOSITION 2: The correspondence §: E—> R™is single valued.

In view of Proposition 2, the correspondence 8 will be referred to as the choice
function. This refers 1o the fact that § chooses exactly one optimal combination of
the activity vectors and net trade vectors from among the feasible ones. Note that
if (a',...,a") € 8(e), then, by definition, there exist (x,,...,x,_,}Z0 such
that 321 a'x;=a" Thus, it may be more appropriate to define “op-
timality” in terms of the ordered n-tuple (a'x,, ..., a" 'x,_;,a") rather than in
terms of (a', ..., a"".a"). For the purpose of this study, however, it is quite
unnecessary lo make a distinction between (a'x',...,a" 'x""',a") and
(a',...,a""',a") as there is a one-one correspondence between the lwo (see,
for example, the proof of Proposition 1 in Section 5 below).

PROPOSITION 3: For every e,E € E, if 0(e) N 8(2)# @, then every e()E E,

where e(iy=(e',..., e & et ... e")iEN.

As noted above in Proposition 1, E is not the Cartesian product of the £', i.e.,
L(E)¢ E. Proposition 3, however, enables us to introduce the following defini-
tion of the uniqueness property.

E is said to have the uniqueness property with respect to a function f, if (i) fis a
function such that dom f C E, (ii) for every e, € dom f, if 8(e) N 8(2) # O then
every e(i) € E, where e(i)=(e'.....e"""&e'*),.. . e"), i €N, and (iii) if
(8¢e) N B(2) N (1., 8(e(i)) # @ then f(e) = f(2).

Our definition of the uniqueness property is weaker than that of Hurwicz [15)
and Osana [23], in that we do not require that L(dom f) (= L'(dom ) X - - - X
L"(dom f)) should be contained in E, but subslitute a weaker condition. Later
we shall be in fact dealing with an f for which L(dom /)¢ E. (It is worth noting
that the space into which f maps is immaterial to the definition.)

We now endow E with a topological structure. Let d be the pseudo-metric on
E defined as d(e,2) = |0(e) — 8(&)| for every e,é € E, where || is the usual
metric on R™. Since 8(e) may be equal to 6(&) for some e, € E.e#é. disa
pseudo-metric. An open sphere of radius € about e then contains all those & for
which 8(¢) = 8(e) as well as those for which |8(e) — 8(2)| < €. As in the case of a
metric, the class of open spheres in £ as defined by the pseudo-metric 4 forms a
base for a topology. We give E the topology generated by the class of open
spheres in £. In this way E is endowed with a pseudo-metric topology.

PRroPoSITION 4: The choice function 9: E— R" is continuous and 8~ ': NE)
-> E is lower hemicontinuous.

8LeL X and Y be topological spaces. A dence F: X - Y is said 10 be lower Aemicon-
timuous if {x: F(x) N V » @) is open in X for every open st ¥ C Y.
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3. THE TAYLOR PROCESS

We shall now state the Taylor process. We take commedity n as the numeraire
and assume its price to be identically equal to unity. Prices of the remaining
commodities are taken to be positive and the ser of all possible price vectors is
denoted by

P={pER":p>0ViENandp, =1).
For cach p € P and ¢’ € E, let
J(p.e') = pi~ maximum pa' and
g'(p.e’)-mn:ién'i'zerpa' Gi=L....n-1)

Then f/(p,e') denotes the minimum cost of producing one unit amount of
commodity i and g(p,e’) denotes the least cost activily vector. For each p € P
and e” € E” define

¢(pe”)= maximizer u(y+w*),
(pe”) YE[1E5* : pr =0} 5 )

where (u,w*)=e". Note that c: P X E"—> §°. Let
[(pe")y=1-pe(pe”)(=1) and
g'(p.e”)=c(p.e”).

Then f*(p,e") denotes the value of the utility maximizing consumption bundle
and g"(p.e") the utility maximizing net trade vector of agent n (subject 1o its
budge! conslraint).

The functions (f*, ..., /") and (g', ..., g") as defined above determine the
nature of the following dynamic process:

P+ 1)=f(p(1).¢') (i=l....;1=01...)
where p° € P, 50 that in equilibrium

p=f(pe) peEP (i=1,....n)
and there exist (a',...,a")Ee' X -+ X e"' X §* such that

a'=g'(pe) (i=L....n

Let g2 E- p(E) be the correspondence defined as
me)=(pEP:p=[f(pe), eEE,
where f=(f',...,f*). Letg=(g!,...,g"), where g' is a3 defined above.

9For the convergence proof of Lhis process, se¢ [6, 7, 29).
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The Taylor process is then defined as the ordered pair [, g}. The correspon-
dence y will be referred lo as the equilibrium message correspondence and g will be
referred to as the (“paramelric”) outcome function (g is single-valued as will be
shown below). This defines the Taylor process. We now state its properties.

THEOREM |: The Taylor process | . g] satisfies the following properties:

PROPERTY (A): The equilibrium message correspondence . is single valued, g is
single valued, and for every e € E, g(p,e) € 0(e) for very p € p(e).

PROPERTY (B): For every e,& € E, if p(e) N p(#) # O, then each economy e(i),
E(i) belongs to E and p(e()) N p((1)) = p(e) N u(2) for every i € N, where

e(iy=(e',..., e\ &le'*! ... e and E()=(',...,¢' "¢,
L)

ProPERTY (C): p: E— p(E) is continuous and =" p(E)> E is lower hemi-
continuous.

(Here p is a function as claimed in Property (A) above and p(E)C R" is
endowed with the Euclidean topology.)

CoRroLLARY TO THEOREM 1 (PROPERTY (C)): The correspondence p: E— p(E)
is locally threaded.'"®

The proof of Property (C) (as well as of Proposition 4 above and Theorem 3
below) involves the following definition and lemma. Given two topological
spaces X and Y, a correspondence F:X->Y is said to be uniformly locally
threaded if for every xo € X and every y, € F(x,) there exists an open neighbor-
hood U, in X of x, and a continuous function 5,: Up—> Y such that sy(x,) =y
and sy(x) € F(x) for every x € Uj.

LemMa 12 If F: X = Y is uniformly locally threaded, then F is lower hemicon-
tinuous.

4. RESOURCE ALLOCATION PROCESSES AND INFORMATIONAL EFFICIENCY

Given the environment class £, an ordered pair [», k] consisting of a correspon-
dence » and a function 4 is called a (paramelric) resource allocation process for
E, if (i) E C domw and (ii) domh D {(g,€): ¢ € »(e) and e € E}. The correspon-
dence » will be referred to as the equilibrium message correspondence, the function
h will be referred to as the (p ic) Junction, and »(E) will be
referred to as the message space of the process.

A process [», h] is said to be nonparametric if for every q € »(E), h(q.€) = h(q.
g) for every e, E E, i, h is independent of e so that, given the equilibrium

'°Given two topological spaces X and Y, & correspondence F: X = ¥ is said 1o be locally threaded
if for every xo € X there exists an open neighborhood Uy in X of x, and a continuous function
552 Ug— ¥ such that sg(x) € F(x) for every x € Uy (¢f. Mount and Reiter [21)).
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message, an outside agency with no knowledge of the envi could
determine the outcome.

A process [», h] is said to be decisive on E, if »(e) # @ for every e € E; [5.h] is
said 10 be nonwasteful on E, if for every e € E, h(g,e) € 8(e) for every g € v{e);
[v,h] is said to be smooth on E, if » is a locally threaded correspondence: [, ] is
said to be privacy preserving'' on E, if (i) for every pair of cconomies e,z € E,
v(e) N »(&) # @ implies that »(e{)) N v(&(})) = »(e) N »(2) for any pair of econo-

mies e{i),&(i) that may belong lo E, where e(i)=(e', ..., e/ & e,
.,e"), and &) =(e',...,& "e\&"",...,&"), i€ N, and (i) the out-
come function is privacy preserving in lhe sense that A= (', ..., A") such that

domh' = »(E)X LY(E), i € N, so that for every e € E, h(g.e) = (h'(g.¢"). ...,
h"(g.e")) for every g € v(e).

In what follows we shall restrict lves to resource
whose message spaces are subsets of a Euclidean space and prove lhal the
message space of the Taylor process is minimal among the message spaces for the
general class of p ic resource all processes which are privacy
preserving and nonwasteful. We shall use the dimension of the message space as
the measure of its informational size. To make dimensionality a genuine concept
of the informational size of the message space we shall require the process to be
smooth: the local threadedness of the equilibrium message correspondence.”

Is there any resource allocation process which is decisive, nonwasteful, privacy
preserving, smooth, and uses a message space of smaller size than the Taylor
process? Results below show that the answer is in the negative. To highlight the
role of the parametric outcome function. these resulls are proved al two different
levels of generality, first for the class of nonparametric processes and thea for the
more general class of parametric processes.

Theorem 2 below will use the following general lemma. Since our definition of
the uniqueness property is weaker, this lemma is more general than the well
known singlevaluedness lemma of Hurwicz [15].

YThis definition of privacy is more general than that of Mounl and Reiter j21], in that it is not
based on the that the class is d ble. It is worth noting, however,
that the Mount and Reiler definition is given in terms of the “coordinate correspondences™ aad the

“crossing condition™ is shown to be necessary and sufficient {21, Definition 3 and Lemma 5) whereas
our definition is based direcily on the crossing condition, which is, as can be shown casily, necessary
but not sefficient (not unless the envi class is ds ble). In fact, if the envi: class
is decomposable, then (on account of Lhe Lemma n:ferred 10 above) the two definitions are
equivalenl.

12The smoothness of the process rules out certain encoding procedures by means of which the
information contained in & two dimensional message can be compressed into a one dimensional
message. Hurwicz [14, 15] and Mount and Reiter [21) provide some examples of such procedures
related to the space lilling Peano curve which maps Lhe unit interval [0, 1] onto the unit square
[0,1) X [0.1]. TF we were to consider resource allocation processes that wse general topological
message spaces, then we can use & lized concepl of the inf ! size of message spaces as
developed by Mount and Reiter [21). In that case, of course, the process will be required 10 sausly an
additional smoothness condition similar (o that of the Taylor process: the lower hemicontinuity of the
(lower) inverse of the equilibrium message comespondence. For simplicity, however, wo restrict
ourselves to Euclidean message spaces only.
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LEMMA 2: Let [»,h] be a decisive, nonwasteful, and privacy preserving nonpara-
melric resource allocation process for E. If E has the unigueness property with
respect 1o the function f and f is . then 7 is injective over dom f."*

Let X and Y be Euclidean spaces. Then “X & , Y™ means “dimension of X is
greater than or equal to dimension of ¥.”

THeOREM 2: Let [7,h] be a nomp ic resource allocation process for E
which is decisive, nonwasteful, privacy preserving, and smooth. If its message space
W(E) is Euclidean, then »(E) Z ,0(E).

THEOREM 3: Let [5,h] be a (p ic) resource all process for E which
is decisive, nonwasteful, privacy preserving, and smooth. If its message space »(E) is
Euclidean, then v(E)Z pp(E) (where p(E) is the message space of the Taylor
process).

It may be noted that #(E) is of dimension n(n — 1), but g(E) is of dimension
n— 1 only.

I ingly, the Malinvaud-Taylor process to be discussed in Section 6 is
nonparametric and the dimension of its message space is n(n — ) equal 1o that
of 4(E), i.c., the Malinvaud-Taylor process is informationally efficient for the
restricted class of nonparametric processes, but not for the general class of
parametric processes. This should illustrate the role of the parametric outcome
function in relation to the informational efficiency of the process.

The proof of Theorem 3 will use the following definition and lemma.

We shall adopt the following notation concerning n-tuples. For any two
n-tuples x=(x',...,x") and X¥=(%',...,%") we shall denote by x(),
i=1,...,n thentuple (x', ..., x"" 1% x| . x".

The environment class £ is said to have the asymmetry property with respect to
a function f, if (i) f is a function such that dom f C £ and L(dom f) C E, and (ii)
foreverye=(e',...,e") and &= (&',...,&") (in dom f), if there are n-tuples
a, 4, and a(i) (i € N) such that a € 8(e), @ € (&), and a(i) € 8(e(7)) for every
i € N, then f(e) = f(?).

Note that the space into which f maps is immaterial to the definition.

Lemma 3: Let [»,h] be a decisive, nonwasteful, and privacy preserving (para-
metric) resource allocation process for E. If E has the asymmetry property with
respect to a function f and f is one-one, then » is injective over dom f.

It is worth noting that for every f, if £ has the asymmetry property with
respect to f, then it also has the uniqueness property with respect to f. The

YA correspondence F: X ¥ is said 1o be injective over a subset X° C X if lor every x,X € X*,
F{x)N F(2) » O implies x = X.
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converse, however, is not true, that is, there may be a function f such that e has
the uniqueness property with respect to f, but it does not have the asymmetry
property with respect to f. The asymmetry property is thus stronger than the
uniqueness property. There may be special situations, however, where the two
properties are cquivalent in the sense that one implies the other. One such
situation arises when the eavi are of the classical pr ge variety
and the choice function is the Pareto correspondence. This, however, is not the
situation in the present case as we show by means of an example." Let S denote
the set of all singleton sets. Let

EV=(e'CE':e'ES) (i=1...,n-1),
E*"=E", and
E*=((¢)...,e"€EE:EE (im],...,n)}.

Then E*C E is the set of all envi that lack technical substitution
possibilities.

PROPOSITION 5: The environment class E has the uniqueness property with
respect fo the identity function f* on E®, but it does not have the asymmetry

property with respect 1o f°.
5. PROOF OF THE RESULTS"

ProoF oF ProposITION 1: We first prove that LY(E)= E' for each i€ N.
Without loss of generality take i = 1. Let 8' € E'. We show that there exist
F#EE (i=2....,n—1)suchthat (¢',...,&" " e") € E forevery e" € E".

Given some a' € &', there exists a (normalized) vector 5 € R, such that
Py=1and 5@ =0 Let @, ...,a"" be some n-dimensional vectors such that
'=1,8S0for jwid <0 and fa'=0(i=2...,n~1) Let &= (Z}
(i=2,...,n—1). Let 3" € §* be such that p3" = 0. We prove that (3", ...,
GVEr(E, ..., 2" " e") forevery e” € E™.

Let A =(a)) be the (n—1)x(n—1) matrix such that ay=af (i,j=
l....n—1). Then a,=1 and a; S0 for i) Since (By,...,fa A+
@,...,a7"")=0 and @ <0 for j=1,...,n=1, (B, ..., P )A>0.
Since (ﬁl. «« v Pa-1)® 0, it follows from (22, Theorem 6.2] that 4 is nonsingular
and A~ 20. Let (%,...,%,_)=A4""@\...,a"_,). Since A™'20 and 3"

Y Another example where uniqueness is not equivalent to asymmetry is the class of eavironmeats
that were introduced by Hurwicz [14] in his examples 4 and 5.

3We shall follow the following notation concerning the vectors. Given any two vectoes x = (x)
andy =y

x>y implies x>y lforall/,
x>y implis x;&y, forall/and x>y [foratleastonel,
xZy implies x&y foralld
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>0(="h....n=1),F,...,%_)>0. We claim that $72|3%, = 3. The
first n—1 of these n equalities follow from the definition of the X, (i=
1,...,n=1). The ath equality follows from the fact that pa'=0 (i=
I,...,n). This proves that (@'.....@8") Er(&',...,&"",e") for every e
€ E™. Hence (8',...,&8"',e") € E for every e" € E".

We now show that L(E)¢ E. Without loss of generality take n=3. Let
@=(L-2-4) @=(=11,-1 d'=(L,-{ -}, and @=(-2,1,-}).
Let & = (@'} and &' = ('}, i=1,2. Then for every e’ € £, (8.2 M E,
(&, e)eE bu(e', & e’) ¢ Eforany e’ € E. Q.E.D.

Define
P={pERi,:p>0VieNandp =1).

Then P will be referred to as the set of all possible (normalized) price vectors. Let
¢: P X E"—> §* be the function such that for each p € P and " € E*,
LI H + w%),
c(pe)=  maximizer u(y+w')
where (1, w*) = e”. Note that pc(p,e”) =0.
Proof of Proposition 2 will use the following well-known result (see, for
example, (1, 5, 24]).

THE SUBSTITUTION THEOREM: If e € E, then there exists a unique equilibrium
price vector p € P such that for every (a',...,a" ) Ee'x --- X", pa'S
0(i=1,...,n=1) and for some @,...,a""Yee'x,..., Xe""‘pi‘=
OG=1...,n-1)

ProOF oF PROPOSITION 2: Let & € E. We first prove that §(2) s @ and then
show that 8(#) is a singleton,

Since £ € E, (by the substitution theorem) there exists a normalized price
vector FEP and (a',...,d" )€ X -+ x &' such that p7’' =0
(i=1,...,n=1). Let @" = ¢(p.&"). Then as in the proof of Proposition 1,
(@,...,a") € r(¢). Hence 8(¢) * 0.

Suppose that (5',...,5") € 0(#). Then, by definition, there exist
(Fis- -+ Fo_t) >0 such that 3721 5%, = b, The substitution theorem implies
that p5'S0 (im1,...,n—1). Thus p6" S0 and (b',....5") € 8(#). This
together with the fact that @ = c(j5,") implies that 5" = 3" and thus pb" = 0. 1f
(6" ....5" Yy=(@',....a"") then pb’ <0 for some i(=1..... n-1) be
cause of the strict ity ption. This, h ,C dicts that pb* = 0
and 5" = 372/ 5%,. Hence (§',...,56" =(@',...,a"). This proves that @ is
single-valued.

PROPOSITION 2’ An ordered n-tuple (@', ...,a2") € 8(3), if and only if. ()
(@,...,8M €& X -+ X &1 X §°, (ii) there exists a price vector f € P such
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that pa' = 0 (1€ N) and " = c(p,&"), and (iii) pa' S0 (i=1,...,n-1) for
every (a',...,a" )Ee' X -+ X,

Proor: Sufficiency follows from the proof of Proposition 2. We prove the
necessily.

Suppose that (@', ..., 3") € 8(#). By definition, (@',...,3")€&' X -+ x
#"'x §* and there exist (%),...,%,_,)»0 such that 3" = $5-1a%,. Let
A =(a) be the (1 — 1) X (n — 1) matrix such that @, =3 (i, j=1,....n~1).
Thea a,=1 and a;=0 for j#i (i=1,...,n—1). Since a" € §*, &' >0
(i=1,...,n=1). A well-known result (see, for example, (22, Theorem 6.2])
then implies that A4 is nonsingular and A~'&Z0. Let (5,,....5,. )~
-@,....8" YA Since @/ <O (i=1,...,n~ 1), (B),--., o) PO Let
P=(Ps...1Pp-1s1). Then pEP and @' =0 (i=1,...,n). It is also clear
from above that " = ¢(p,&").

Next we prove that for every (a',...,a" )€&' x --- x &}, pa'S0
(i=1,...,n—1). Without loss of generality take 7 = | and suppose contrary to
the assertion that pa' > 0 for some a' Ee'. Let (8',...,5""") be defined as
B'=a'and 5'=a' (i=2,...,n-1). Let B=(b)) be the (n—1)X(n~1)
matrix such that b, = 8/ (f, j=1,...,n—1). Then (p,, ..., f,.)B »0. Since
(Pa--- ,i,_,)»& it follows from [22, Theorem 6.2] that B is nonsingular and
B~'20. Let (§,,....5,-)=B~X@},...,a.,). Since B~' 20 and 3" >0
(i=l...,a=1)% (§),...25p))>0. We claim that 352)5%, = 3. Let b
= 31215%,. Since pb' > 0and pb' = 0 (i=2,...,n = 1), 55" > 0. Now 53" = 0
and, by definition of (j,....5,1) 8" =4 (i=1,...,n—1). Therefore,
b" > @". This contradicts that (3", ...,d") € 6(#). Hence our supposition is
wrong. This proves our assertion.

COROLLARY TO PROPOSITION 2': Let e € E°. Then ¢ € E, if and only if, there
exisis an equilibrium price vector p € P such that for every (a',...,a""")
€e'x .- xe" !, pa's0 (im1,...,n~1) and for some (3@',...,3"7")
€e'x - xXe"\pa'mO(i=l,...,n-1)

PROOF OF PROPOSITION 3: It is evident that if 8(e) N #(#) s @, then for each of
the economies e, &, and e() (i € N), the equilibrium price vector must be the
same. The proof then follows from the corollary to Proposition 2",

Proor or THeoREM | (PROPERTY (A)): By definition of p and Proposition 2,
P E p(e) only if there exists an (@, ..., 3") € 8(e) such that @' = 0 (i € N).
Since 8 is single valued (by Proposition 2) and the system of equations pa’ = 0
(p € P and i € N) admits only one solution, p is single valued. It is also clear
from Proposition 2 that g(p,e) € 8(e) for p € p(e). Because p and § are single
valued, therefore, g must be single valued.

Proor or Taeorem 1 (ProPerty (B)): Evidently, if p € k(e) N p(#) then
P € pe(D)p(&(D), i € N. Corollary to Proposition 2’ then implies that e{i) and
(1) belong 1o E for each / € N. Hence the proof.
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PrOOF OF PROPOSITION 4: Since #: E-»8(E) is single-valued and d(e,)
=|0(e) — 8(&)| for 2ll e,Z € E, 8 is an isometry (a d-| - | isometry). This proves
that #: £- 8(E) is conlinuous.

Let 5: 8(E)~> E be some global thread of 8 ~': §(E)~> £, i.c., s(a) 8~ (a)
for every a € 8(E). Then s is onc-one and the restriction of the metric 4 (o the
points in s(8(E)) is a metric on $(8(£)), i.c., s(§(E)) is a metric subspace of the
pseudo-metric space £ and s is an isometry. This implies that s is a homeomor-
phism. This proves that each (global) thread of ~': #(E)—> E is a continuous
function, i.c., § ' is uniformly globally threaded. Using Lemma 1, it follows that
8- is lower hemicontinuous.

PrOOF OF LEMMA 1: Let ¥ be open in Y. We must show that G = {x: F(x)N
V@) is open in X. For each x,€ G, pick a y,€ F(x)) N V. Then by
assumplion there exists an open neighborhood U containing x, and a continu-
ous function so: Uy Y such that sg(xg) = y5. Let Up= UyN {x:5{x) E V).
Then T, is an open set containing x,, which is contained in G. Hence G is open.
This proves that F is lower hemicontinuous.

ProoF OF THEOREM 1 (PROPERTY (C)): The function u:E->p(E) is the
composition of the function §: £~ #(E) and a function 5: §(E) - p(E) defined
as follows. For each (a',...,a")€#(E) identify the ordered n-tuple
(a',...,a") with the n X n matrix whose columns are a',...,a" ie, with
a={a',...,a"]. Let 5:8(E)-> P be the function such that for each a € §(E),
1(a).= p, where p is such that pa = 0. Evidently, n is single-valued and p o § = .

By Proposition 4, we know that # is continuous and 8 ~' is lower hemicon-
tinuous. We show that y is continuous and ' is lower hemicontinuous. It then
follows that p is continuous and p~' is lower hemicontinuous (cf., Berge [3,
Theorem 1 Section 2, Chapter VIJ).

First we prove that n~' is uniformly globally threaded such that each of its
threads is an open and continuous function.

Let 5 € 7(8(E)) and let @ € 57 '(5). Then jd =0 and there exists an & € £
such that p = k(¢) and = 6(2). Let &" = (&, w*). Then, there exist (d,., ..., a)
€ R, such that #(x)=[]x* for all x € R} . Since 7= 4(#) and j = p(#),
& =p(@" +w)(i=1,...,n)where 3" is the nth column of 2.

We construct a function §: g(E)-> #(E) such that ¥(5) = & and 5(p) € 1~ '(p)
for every p € n(8(E)), i.e., § is a global thread of n~' passing through . For
every p E3(0(E)), define a nX n diagonal matrix ( = diag(5,/p,). For every
P ENB(E)), let

¥(p)=QGQ ™' =a, say.

Evidently, pa = 0 and p(a" + w?) = p(a + w?) = &, i.e,, a" = ¢(p,&"), where
a” is the nth column of a. Let e=(e', ..., e") be such that e'= {a'} (im
l,...,n—1) and e" = " = (ii,w*). Then ¢ € £, (by Proposition 2') a = #(e)
and p = p(e). Thus, a € n~¥(p), since pa = 0. This proves that ¥(p) € 3~ '(p).
From the definition of § it is clear that $: y(8(E))— ¥ (n(#(£))) is onc-one
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open and continuous. Since § and @ arc arbitrary, this proves that n~' is
uniformly globally threaded such that each of its threads is open and continuous.
Let S be the collection of all global threads of n~'. Then for any set G

Cn(8(E))
174G)= U s(6)
IES

Since each function s € § is open, 5(G) is open for every open set G C n(8(E)).
This implies that 5~ '(G) is open for G open. Hence 7 is continuous, Also, since
n~" is uniformly globally threaded, Lemma 1 implies that 7' is lower hemicon-
linuous.

ProOF OF PrOPOSITION §: Clearly, dom f* = E*. Using Proposition 2’ and the
single-valuedness of &, for every € € E*, (d",...,d") = (¢) if and only if
(@ #=(d) (i=l...,n=1)
(b) there is an equilibrium price vector 5 € P such that 53’ = 0

(i=1,...,n);

© & = (#,w*), where §(x) =[x/ for all x € R} and & = 5(" + w?).
These conditions imply that for every e,& € E®, 8(e) = 8(?) only if e = &. This
proves that £ has the uniqueness property with respect to f*.

That E does not have the asymmetry property with respect to f* can be proved

as follows. Let e, € E* be such that §(e) # 8(¢) but there is a price vector
p € P such that

(C)] pa'=pa'=0, iEN,

where (a', ... ,a”) 0(:) and (a JTRED a") = §(&). Clearly, such ¢ and Z exist.
Let a(i)=(a', “hata*t!, . .., a") and e(i)=(e', ..., e &,
et e, xE N Then condluons (2), (b), and (c) as applied to ¢, & and

e(i), i € N. and (d) imply that a(i) = 8(e(i)) for each i € N. Since e = ¢, the
proof follows.

ProoF oF LemMa 3: We have to show that given two arbitrary elements
e, € dom f, v(e) N »(8) # @ implies e = &. Let m € v(e) N »() and let h(m,e)
=g and h(m,€) = @. Because [». 4] is given to be privacy preserving, therefore,
(i) if m€ w(e)N v(E) then m € v(e(i)) N »(2(i)) for every i € N, and (i) if
m € v(e(i)) for every i € N, a = h(m,e), and @ = h(m, &), then a(i) = h(m,e(i)
for every i € N, where e(i) and a(i) are as defined in the definition of the
asymmelry property. (i) and (i) together imply that a € 8(e), @ € 8(&). and
a(i) € 8(e(1)) for every i € N, since we are given that |», k] is nonwasteful for &
and that dom f C L(dom f) C E. The fact that a € 8(e), a € §(¢). and a(i)
€ 8(e(i)) for every i € N, together with the fact that £ has the asymmelry
property with respect to f implies that f(e) = f(&). Since f is one-one, e = &
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ProoF oF THEOREM 3: First we construct a subclass of environments £*° C E
such that £ has the asymmetry property with respect to the identity function on
E** and p(E**) = u(E). There are several such subclasses. We shall take up the
one that is technically easier to handle. Let

E**=(e'€E*:ifaE e’ theng = Oforj+ i,n)
(Inl.....n—l)
where E¥(im 1,...,n~ 1) are as defined in Proposition 5. Let
E**" m [P X W*,  where
U = {w € U* :u(x) =[x/ for all x € R} }.
Clearly, U** is a singleton consisting of the utility function u®: R}, - R such
that u*(x) = []x//* for all x € R} .
Let E*¢ = E**1 X .- X E**", Evidently, L(E**)= E*® and E** C E*. We

prove Lhat £ has the asymmetry property with respect to the identity function on
E**. For every €€ E*, (d',...,d") € 8(é), if and only if

(@'}=¢ and
M @ - (=1 cn=1)

Lete,Z€ E**. If (a',...,a")E8(e) and (@', ..., d") € 8(&), then (1) implies
that

@  -dgew)=t (=beon=)
and
®  -d@+e)-1 G=loo,n=1).

Let a(i) and e(i), i € N, be as defined in the definition of the asymmetry
property. Then, by (1), a(i) € 8(e()), i € N, only if

@ -a@ew=1

Clearly, (2), (3), and (4) imply that @} = a!, i.c., @' = a'. This means that a(f) = a
and so a € 8(e(i)). But if a € §(e(i)) then (1) implies that e(i) = e. This proves
that E** has the asymmetry property with respect to the identity function on
E**,

Let # be the restriction of p to E°*, ie, f: E**— p(E). We prove that
f(E**) = y(E) and that £7':p(E)-> E** is a continuous bijection. Let p
€ p(E). Then pE R}, and p,=1. For i=m1,...,a—1, let a’ be the x-
dimensional vector which has unity in the ith place, —p, in the nth place, and
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zer0 elsewhere. Let e = {a'} (= 1,... . n— 1) and e” = (u*,w*). Then pa’ = 0
(i=1,...,n—1). Corollary to Proposition 2’ and the definition of £** imply
that (e, ..., e") € E**. Definition of s implies that p(e) = p-Thus, p € p(E**).
This implies that u(E**) D u(E); thus p(E**) = p(E). Moreover, it is clear thal
f: E** - p(E) is one-one. Thus,

g:E**>p(E) isabijection.

Let f denote the restriction of 8 to E*, i.e., §: E**— §(E**), Since E** C E*,§
is injective over E** (by Proposition 5). Since §is single-valued, the restriction of
the pscudo-metric d to the points on £** is a metric on E*°, i.e., £°* is a melric
subspace of the pseudo-metric space £. S0 §: E** = #(E**)isan isometry. i.c.. §
is a homeomorphism. This means

' :4(E**)> E** isa conlinuous bijection.

Let n: 6(E)— p(E) be the continuous surjection as defined in the proof of
Theorem 1 (Property (C)). Let #:§(E**)—> u(E) be the restriction of 7 to
ﬁ(E“). It is evident from the proof of Theorem 1 (Property (C)) that 4 is a
homeomorphism and that =" = § =" o 4. Since § ~' is a continuous bijection,

A" :p(E)-> E** isa conlinuous bijection.

Given that [»,h] is decisive, nonwasteful, and privacy preserving, Lemma 3
implies that » is injective over E**. Since g(E) is Euclidean, let p° be an interior
point of u(E). Let &%= i~'(p"). Then by the definition of &, ¢’ € £**, We are
given that [»,h] is smooth over £; therefore, there exists an open neighborhood
W in E of ¢° and a continuous function s5: Wy — »(E) such that sole) € v(e) for
every e € W, Let W= W, N E*® and s§ = s,| W3. Then W} is a nonemply
open neighborhood in £*° of ¢® and s§ : W3 - »(E) is continuous. Moreover, s¢
is one-one, since for every e,& € WY, s§(e) = s§(&) implies »(e) N »(&) # O in
contradiction to Lemma 3. Let Uy = A(W3). Then U, is an open neighborhood
in p(E) of p° (since 4~": u(E)-> E** is a continuous bijection and W is open
in E**). Let fig' = i~"| Uj. Since s and ji;"' are both continuous and one-one
functions, the composition s§ o iy ': Uy— »(E) is conlinuous and one-one.
Therefore p(E) Z , U, (cf. [8, Corollary 1.1]). However, the dimension of U, is
equal o the dimension of p(E), since U, is open in x(E). Hence v(E) Z pu(E).

Proor or LemMa 2: We have to show that given two arbitrary elements
e, € dom f, v(e) N »(?) # O implics e = &. Let m € »(e) N »(¢) and let g = h(m,
€). Given that [», 4] is nonparametric, g = h(m, ¢’) for every ¢’ € E. In particular,
a = h(m,&). Since (v, k] is given to be nonwasteful for £, a belongs to both 8(e)
and 8(8), i.e., a € 8(e) N 8(3).

Since ¢, € dom f and 8(e) N 8(¢) # @, it follows from the definition of the
uniqueness property that e(/), #(/) € E lor every { € N (where e(/) and &(i) arc as
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defined in the definition). Given that {»,h] is privacy preserving and that e(/),
&(i) € E for every i € N, v(e) N »(&) = v(e(i)) N »(&(i)) for every i € N. This
implies that m € v(e) N v(8) N (Y], »(e(i)). Since [», k] is nonwasteful for £ and
e(i) € E for every i € N, a € 8(e) N 8(&) N )], 8(e()) (because a = h(m,e(i))
for every e(i) € £). But the fact that this intersection is nonempty, together with
the fact that E has the uniqueness property with respect to f, implies that
f(e) = f(2). Since f is one-one, e = 2.

PrOOF OF THEOREM 2: First we construct an environment class £* C E such
that £ has the uniqueness property with respect to the identity function on E*
and 8(E®) = 8(E). Let E* be the class of environments as defined in Proposition
5. As proved in Proposition 5, £ has the uniqueness property with respect to the
identity function on E*.

Let 8° denote the restriction of @ to E*. Then domf* = E* and #*(E*)
C 8(E). We prove that 8*(E*) D 8(E), thus, 8*(E*) = 8(E). Let (a@'....,a")
€ §(E). Then, by Proposition 2', there exists a price vector p € P such that
pa‘=0for all i € N. Define & = p(3] + w!). Then T5, = 1. Leti: R1 >R be
the utility function defined as #(x) = [[x? for all x € R} . Then # € U* and
@' = c(p,e") for 8" = (@,w*). Let & = (@'} (i=1,...,n~1). Proposition 2
implies that (@', ..., ") € 8(¢). Definition of E* implies that & € £*, This
proves that §(E) C §°(E*). Hence §*(£*) = §(E).

By Proposition 2, #* is single-valued and as proved in Proposition 5. 8* is
injective over E*. As in the proof of Theorem 3, £* is a metric subspace of E
and §*: E* - §(E) is a homeomorphism. This means

g°~':9(E)> E* isa continuous bijection.

Given that [», h] is a nonparametric resource allocation process, which is decisive,
nonwasteful and privacy preserving, Lemma 2 implies that » is injective over £°.
We can now follow a similar line of proof as in Theorem 3 and prove that there
are functions s§ and 63" such that the composition 5§ o 83~': Uy> »(E) is
continuous and one-one for some open neighborhood Uy in »(E). It then follows
that »(E) 2 ,0(E).

6. THE MALINVAUD-TAYLOR PROCESS

This section has a dual purpose: (i) to show that the class of processes
considered in Theorem 3 above includes processes other than the Taylor process,
and (ii) to highlight the role of the parametric (or nonparametric) outcome
function in relation to the informational efficiency of the process. A natural
choice for this is the Malinvaud-Taylor process (8, 20, 28] which is decisive,
nonwasteful, privacy preserving, smooth, parametric. and informationally
efficient among the class of nonp ic resource allocation processes {for this
we use Theorem 2), but not among the general class of parametric resources
allocation processes (for this we use Theorem 3).
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Let B:8(E)-> P be the function such that for each (da',...,a") € §(E),
B(a',...,a")=p, where p € P is such that pa‘=0 for all i € N. For each
a€8(E)and e’ € E', let

g'(a, €'} = maximizer B(a)b’ (i=N....n=1)
dee
and
n LI i . "= .
g(a.e") ’Elryeamyu?%;“)u(y+ w*),  where e”=(u,w*)
The functions (g',...,g") as defined above determine the nature of the
following dynamic process:
al(e+ ly=g'(B(a'(®), ... a"(n))e') (fEN;1=0,...),
where (a'(0),...,a"(0)) Ee' X -+ X "' X §* N (E). So in equilibrivm
=g'(B@....a"e") (i=H....n).

Let »: £ »(E) be the correspondence defined as
v(e)= [(a',.‘.,a")Ee'X e Xe™!'x 80 (dl ..., a")
=g(B(a".. a")e))

where g =(g'....,g"

The Malinvaud-Taylor process is then defined as the ordered pair [», 1] where
1 is the identity function on 8(E). The static properties of the Malinvaud- Taylor
process follow from the fact that » = 8. Its h follows from P
4. That it is informationally efficient among the class of nonparametric resource
allocation processes follows from Theorem 2, and that it is informationally
inefficient among the more general class of parametric processes from Theorem 3
and the fact that (E) Z ,pu(E) but p(E)#DG(E), where u(E) is the message
space of the Taylor process.

7. CONCLUSION

We have proved above the mlonna(nonnl emclency of the Taylor process
among a certain class of p ic p . For this we
have developed an nnalyuc framework that may be of more general applicability.
The definition of the asymmetry property, Lemma 3, and Theorem 3 in compari-
son to that of the uniqueness property, Lemma 2, and Theorem 2, respectively,
are of particular interest from this point of view. Our results bring into focus the
following aspects of the general theory of resource allocation processes.

(i) Greater informational decentralization can be achieved through p ic
than through nonparamelric processes. (i) For any environment class for which
the unig properly is cquivalent to the asy Y property, grealcr infor-

ional d ion cannot be achieved through ic p

P
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Point (ii) above offers a useful and easily testable criterion. We give here two
examples. For the cl | pure-exchange envi class the 1
property is equivalent to the asy y property (see Chander [9]). But for the
environment classes that were introduced by Hurwicz [14] in his examples A and
B (concerning the possibility of informational decentralization in production
economies with externalitics) uniq; is not equivalent to asy y (see
Chander [10}).

Finally, we end this paper with a comment concerning the environment class
considered. One natural question may be: can we broaden the environment class
and still find (informationally decentralized) processes which will possess desired
(stalic) optimality properties (for example, Pareto optimality of the equilibrium),
and possibly some dynamic (stability) properties, and which will be amenable to
the same type of analysis as above? The answer (o this question is, of course, in
the affirmative. Alter all, the environments considered in this paper constitute
only a special case of the cl 1 envir with production. We restrict to a
narrow class, however, because it enables us to focus on some particular aspects
(as noted in the two preceding paragraphs) of the general theory of resource
allocation processes.

Indian Statistical Institute
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