Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/7092
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharjee, Suvrajit-
dc.date.accessioned2020-12-21T10:20:24Z-
dc.date.accessioned2020-12-21T10:20:35Z-
dc.date.available2020-12-21T10:20:24Z-
dc.date.available2020-12-21T10:20:35Z-
dc.date.issued2020-03-
dc.identifier.citation115p.en_US
dc.identifier.urihttp://hdl.handle.net/10263/7092-
dc.descriptionThesis is under the supervision of Prof. Debashish Goswamien_US
dc.description.abstractAbstract: In this thesis, we study quantum symmetries within the realm of noncommutative geometry. These symmetries are captured in two levels of generality, namely, Hopf algebras (or compact quantum groups) in the context of noncommutative differential geometry a la Connes and Hopf algebroids in the context of noncommutative Kaehler geometry a la Ó Buachalla. We compute the orientation-preserving quantum isometry group of the Chakraborty-Pal spectral triple on the odd sphere. Generalizing the Hopf algebra case, we build a framework to take into account Hopf algebroid equivariance in non-commutative complex geometry. We classify complex structures on a canonical spectral triple over the three-point space and identify a universal Hopf algebroid acting on a finite space.en_US
dc.language.isoenen_US
dc.publisherIndian Statistical Institute, Kolkataen_US
dc.relation.ispartofseriesISI, Ph. D Thesis;TH475-
dc.subjectQuantum groupsen_US
dc.subjectOdd dimensional spheresen_US
dc.subjectNoncommutative complex geometryen_US
dc.subjectHopf algebroidsen_US
dc.titleQuantum Symmetries in Noncommutative Geometryen_US
dc.typeThesisen_US
Appears in Collections:Theses
Theses

Files in This Item:
File Description SizeFormat 
20201016-SuvrajitBhattacharjee-Thesis-rev2.pdf1.3 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.