Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/7356
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaitra, Sayantan-
dc.date.accessioned2023-03-24T15:21:45Z-
dc.date.available2023-03-24T15:21:45Z-
dc.date.issued2022-07-
dc.identifier.citation90p.en_US
dc.identifier.urihttp://hdl.handle.net/10263/7356-
dc.descriptionThesis is under the supervision of Prof. Siva Athreyaen_US
dc.description.abstractIn this thesis we first study a stochastic heat equation driven by Lévy noise and understand the well-posedness of the associated martingale problem. We use the method of duality to establish the same. In the second part of the thesis we explore the method of Algebraic duality and establish weak-uniqueness for a class of infinite dimensional interacting diffusions. We conclude the thesis with some preliminary observations on how to construct path wise stochastic integrals under a Poisson random measure.en_US
dc.language.isoenen_US
dc.publisherIndian Statistical Institute, Bangaloreen_US
dc.relation.ispartofseriesISI Ph. D Thesis;TH-
dc.subjectStochastic Equationsen_US
dc.subjectLévy Processesen_US
dc.subjectStochastic heat equationen_US
dc.subjectMarkov processeen_US
dc.titleStochastic Equations Driven by Lévy Processesen_US
dc.typeThesisen_US
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat 
Sayantan Maitra-Thesis - 16-3-23.pdfThesis1.11 MBAdobe PDFView/Open
Sayantan Maitra -17_Form.pdfForm-17538.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.